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Abstract

We investigate the results of Kreps (1979), dropping his completeness axiom. As
an added generalization, we work on arbitrary lattices, rather than a lattice of sets.
We show that one of the properties of Kreps is intimately tied with representation via
a closure operator. That is, a preference satisfies Kreps’ axiom (and a few other mild
conditions) if and only if there is a closure operator on the lattice, such that preferences
over elements of the lattice coincide with dominance of their closures. We tie the work
to recent literature by Richter and Rubinstein (2015).

1 Introduction.

In behavioral decision theory, the term menu refers to a bundle of alternatives, any of which
an individual may consume at a future date. The menu choice literature refers to individual
choice amongst menus. The interpretation is that an individual chooses a menu, from which
she will be asked to choose at some later date. Usually, this second stage of choice is only
implicit; we never get to see this second stage. The menu choice literature is predicated on
the observation that many individuals seek to “leave their options open,” as they may be
(informally) “uncertain” about what their future preferences over alternatives may be. For
example, a typical preference discussed in the menu literature might feature choices such as:

{apple, banana} � {apple}
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and
{apple, banana} � {banana}.

Observe that a “rational” decision maker, who perfectly knows what her preferences will be
at the later date when she will be expected to choose from the menu, would never exhibit
such choices. She would either prefer the apple or the banana, and would therefore be
indifferent between the menu consisting of both and at least one of the singleton menus.

The seminal work on menu choice is due to Kreps (1979). He establishes two classic
decision-theoretic results on the theory of preferences over menus. First, he characterizes
those preferences over menus that behave as what we will call indirect preferences. These
are preferences for which there is an underlying preference over alternatives generating the
preference over menus. Second, he characterizes those preferences over menus that admit
a preference for flexibility representation.1 Such a preference can be represented as if there
is a collection of preferences over alternatives, and the preference over menus is monotonic
with respect to these preferences.

Our aim in this note is to consider Kreps’ first result without the completeness property,
and establish that several interesting examples from the theory of choice share a common
structure. We do so in a broader framework than menu choice—the key observation is that
the set of “menus” has an algebraic structure (namely union and intersection) that renders
it a semilattice. To this end, and observing that there is nothing particularly special about
the collection of menus, we work on more general partially ordered sets satisfying different
algebraic properties.

In the context of menu choice, our primary contribution here is to establish (in a suitably
generalized environment) that upon dropping completeness (the fact that any pair of objects
can be ranked), we admit a vector indirect preference representation. This means that there
is a family of indirect preferences, and one menu dominates another if and only if it does
so for every indirect preference in the family. This is termed “vector-valued,” since if each
indirect preference admits a real-valued representation, the ranking coincides with vector
dominance of the imputed image of sets under the vector of representations. Such ideas
are more or less standard in the theory of incomplete rankings (Szpilrajn, 1930; Ok, 2002).
For example, dropping completeness from the remaining von Neumann-Morgenstern axioms
admits a vector expected utility representation.

Much of the proof of this observation is already implicit in Kreps’ work. In the proof of
his second result (mentioned above), he defines an auxiliary binary relation on menus. This
auxiliary relation can be demonstrated to have all of the properties of a relation in his first
theorem, with the exception of completeness.

We actually go further, and work on more general semilattices. Our first result does
the following, for a complete join semilattice. We study the analogues of Kreps’ axioms in
the first theorem, without completeness, and establish that there is a one-to-one correspon-

1A representation refers to a real-valued function whose ordinal structure coincides with the given choice
behavior.

2



dence between orders satisfying these axioms and closure operators (Ward, 1942). Closure
operators are objects from mathematics, but they have recently found much application in
economics. For example, Richter and Rubinstein (2015) studies the family of convex geome-
tries, which are a special type of closure. In another work, Nöldeke and Samuelson (2018)
recently exploits the theory of Galois connections in mechanism design; Galois connections
are intimately tied to the theory of closure.2 There are many closure operators that are
familiar in economics. Topological closure is a closure operator on the lattice of sets. The
convex hull is a closure operator on a lattice of sets. The convex envelope of a real-valued
function is a closure operator on the lattice of functions. Generally speaking, any object
that can be defined as the “smallest” object of a certain type dominating another object
serves as a closure. For example, the topological closure of a set is the smallest closed set
containing that set. The convex hull is the smallest convex set containing that set, and so
forth.

Kreps’ work and most subsequent work focuses on the semilattice of menus. It might be
thought that this is without loss of generality, as many semilattices or lattices are isomorphic
to lattices of sets. In particular, the celebrated Birkhoff representation theorem (Birkhoff,
1937) claims that any distributive lattice can be homomorphically embedded in a lattice
of sets with the usual union and intersection properties. Motivating our general exercise
are two examples of rankings of partitions of a given set. The set of partitions is naturally
ordered by the refinement relation, and is well-known to be non-distributive. In particular,
these lattices cannot be mathematically modeled as lattices of sets. So the added generality
of our results possesses implications for domains that need not “look like” lattices of sets.

On a lattice of subsets of a given set (with the usual union and intersection operations),
it turns out that closure operators can be represented as the intersection of lower contour
sets of weak orders.3 This fact is implicit in Kreps and is entirely analogous to Richter and
Rubinstein’s observation that a convex geometry (antimatroid) can be represented as the
intersection of lower contour sets of linear orders.4 Closely related as well is the famous
decomposition result for path-independent choice functions of Aizerman and Malishevski
(1981). This allows the general “vector” representation alluded to for families of sets. See
also Richter and Rubinstein (2019) for an abstract definition of convexity based on these
ideas.

Now, we can also investigate Kreps’ second result for an arbitrary lattice; positing the
natural analogue of his axiom for an arbitrary lattice elucidates the structure of his second
theorem. It allows us to define the same auxiliary relation defined in Kreps, which we are
able to show satisfies the axioms of his first result. We can use these facts to establish a
generalized version of the Kreps result: any preferences over an arbitrary lattice satisfying

2Every Galois connection induces a closure via the composition of the connection with its inverse; every
closure can be induced from a Galois connection.

3A weak order is a binary relation that is complete and transitive. A lower contour set is the set of objects
weakly dominated by some given object.

4Actually they show upper contour sets, but the idea is the same.
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the adapted Kreps axioms can be represented as a strictly monotonic function of some closure
operator. This is of practical relevance, as Chambers and Echenique (2008) and Chambers
and Echenique (2009) jointly establish another result: preferences satisfying Kreps’ axioms
are those that have monotonic and submodular representations. Thus, it turns out that the
ordinal content of submodularity is captured by the property of being strictly monotonic
with respect to a closure operator.

Applications of these types of results can be found, for example, in Chambers and Miller
(2014a,b, 2018). Here we detail a few.

Example 1. Let Ω be a nonempty set, with |Ω| < +∞. Ω is intended to represent a set of
states of the world, which may be known or unknown by a given decision maker.

The set of partitions over Ω is denoted Π. The refinement relation ≥ on Π is defined as:

π ≥ π′

if for every A ∈ π, there is B ∈ π′ for which A ⊆ B. In this case, we say that π refines π′.
The partitional framework is the canonical model for information about states of the

world. Each element of a partition is an event. If the decision maker possesses partition π
and the true state is ω ∈ Ω, then the decision maker “knows” the member of π that contains
ω. With this interpretation, refinement models the notion of “more informative than.”

Observe that given any two partitions, π and π′, there is a coarsest common refinement,
which we write π∨π′ ∈ Π. This object represents the conjunction of all information contained
in the two partitions π and π′.

Now, imagine an intrinsic preference for information, as in Grant et al. (1998) or
Masatlioglu et al. (2017). Consider an individual who possesses information π∗ ∈ Π, which
is (to an outside observer) unknown. This individual expresses preferences over information
partitions, and it is reasonable to assume that she does so in accordance with the framework
of Blackwell (1953). In particular, we imagine we can observe her preference over different
information structures, for different menus of actions.

Now, this individual will evaluate information structure π ∈ Π by joining it with her
already possessed information π∗, resulting in information (π∗ ∨ π). Thus, she will express
a preference π % π′ exactly when (π ∨ π∗) ≥ (π′ ∨ π∗).

Now, suppose we want to test the hypothesis that this individual actually possesses an
information structure π∗, which is unobservable to us. To this end, we wish to study the
properties that % has. Let us address a (very) simple implication of the model here. Suppose
that the individual expresses that π % π′, and that she conforms to the model. We can
infer then that (π ∨ π∗) ≥ (π′ ∨ π∗). Consequently, (π ∨ π∗) ≥ (π ∨ π′ ∨ π∗), implying that
π % (π ∨ π′).

In other words, if π is deemed “better” than π′, it follows that joining the information π′ to
π can be of no benefit. This is not a general property of intrinsic preference for information;
therefore, it can be understood as a basic testable implication of the model. As far as we
know, this simple observation is new. And in particular, it provides a simple and direct
method of testing when an individual may possess unobserved information.
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Example 2. The following example is mathematically very close to Example 1. Let N ≡
{1, . . . , n}. A set I ⊆ N is an interval if whenever x, y ∈ N and x < y, if z ∈ N for which
x < z < y, then z ∈ I.5 Observe that for any partition π ∈ Π, there is a unique coarsest
partition F (π) ∈ Π for which each A ∈ F (π) is an interval, and whenever A ∈ F (π), then
there is B ∈ π for which A ⊆ B (the coarsest refinement).

Imagine now that the elements of N are individuals, and the ordering reflects (somehow)
their spatial location. Perhaps the individuals are partitioned into “types,” so that an element
of a partition π reflects individuals of the same type, without respect to location. A geographic
planner who wants to build a road is charged with not breaking up communities of individ-
uals consisting of the same type. Perhaps this is done in order to preserve a neighborhood
structure. To this end, the geographic planner prefers as refined a partition as possible. Now,
there may be a set A ∈ π that is not an interval, in which case that type is already broken
up. In such a situation, the geographic planner does not need to worry about preserving the
neighborhood structure; all that is relevant is to preserve neighboring types. To that end, the
planner prefers π to π′ exactly when F (π) refines F (π′); i.e. π % π′ iff F (π) refines F (π′).

Observe now that this structure also satisfies some a very restrictive property: if π % π′,
then the coarsest common refinement (π ∨ π′) does not add any advantage to the geographic
planner: that is (π ∨ π′) ∼ π.

While it may be easy enough to check explicitly whether the geographic planner has in
mind this particular model when the ordering of N is given, if that ordering is not given (for
example, in the case of a non-geographic example), this simple axiom provides a simple test
as to whether there actually is such an order. Again, we believe this result is novel.

2 The model.

Let (X,≤) be a partially ordered set, i.e., a set endowed with a binary relation that satisfies
the following properties:

Reflexivity: For all x ∈ X, x ≤ x.

Antisymmetry: For all x, y ∈ X, x ≤ y and y ≤ x imply x = y.

Transitivity: For all x, y, z ∈ X, if x ≤ y and y ≤ z, then x ≤ z.

The least upper bound of two (or more) elements x, y ∈ X according to ≤ is referred to
as their join and is denoted x ∨ y; the greatest lower bound of these elements is referred to
as their meet and is denoted x ∧ y. The partially ordered set (X,≤) is a join semilattice if
x ∨ y exists for all x, y ∈ X, and is join complete if

∨
xi exists for every subset {xi} ⊆ X.

The partially ordered set (X,≤) is a meet semilattice if x ∧ y exists for all x, y ∈ X, and is
meet complete if

∧
xi exists for every subset {xi} ⊆ X. A partially ordered set is called a

5Here, < is the usual “less than” relation on the natural numbers, of which N is a subset.
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lattice if it is both a join and meet semilattice; it is furthermore called a complete lattice if
it is meet and join complete. A subset C ⊆ X of a partially ordered set is called a chain if
for all x, y ∈ C, either x ≤ y or y ≤ x.

A closure operator is a function c : X → X that satisfies the following three properties:

Extensivity: For all x ∈ X, x ≤ c(x).

Monotonicity: For all x, y ∈ X, x ≤ y implies c(x) ≤ c(y).

Idempotence: For all x ∈ X, c(c(x)) = c(x).

We are interested in investigating binary relations % on X. In addition to reflexivity,
antisymmetry, and transitivity that we have defined above; we are also interested in the
following properties:

Join dominance: For all x, y ∈ X, if x % y, then x % (x ∨ y).

Meet dominance: For all x, y ∈ X, if x % y, then (x ∧ y) % y.

Monotonicity: For all x, y ∈ X, if x ≥ y, then x % y.

Completeness: For all x, y ∈ X, x % y or y % x.

Lower semicontinuity: For any chain C and x ∈ X,
if for all y ∈ C, x % y, then x %

∨
y∈C y.

Note that join dominance of % is defined when (X,≤) is a join semilattice and lower
semicontinuity of % is defined when (X,≤) is join complete. Likewise, meet dominance of
% is defined when (X,≤) is a meet semilattice.

Observe that, when all chains of (X,≤) are finite, lower semicontinuity of % is vacuous,
as
∨
y∈C y ∈ C.

Lower semicontinuity is, in our view, a technical property, in the sense that no empirical
test utilizing only finite data could refute it. On the other hand, the other properties are
inherently testable. Our point here is not to point out a deep mathematical contribution,
but rather to isolate some properties common to disparate methods of choice on lattices.
Our focus is on empirically meaningful statements, so we have isolated continuity from the
remaining properties.

One could, of course, hypothesize as primitive assumptions certain conjunctions of these
axioms. Continuity is formally a property of lower semicontinuity of the binary relation with
respect to the order topology generated by ≤.

In addition, observe that monotonicity of % implies reflexivity of %.

Lemma 1. Suppose that (X,≤) is join semilattice. If a binary relation % satisfies transi-
tivity, monotonicity, and join dominance, then the following holds for all x, y, z ∈ X:

6



x % y and x % z imply x % (y ∨ z).

Proof. Let x % y and x % z. Since x % y, we get x % (x∨y) by join dominance. Furthermore,
(x ∨ y) ≥ x implies (x ∨ y) % x by monotonicity. By transitivity, (x ∨ y) % z. Thus, by join
dominance, (x∨ y) % (x∨ y∨ z). By transitivity and monotonicity, we get x % (x∨ y∨ z) %
(y ∨ z).

Theorem 1. Suppose that (X,≤) is join complete. A binary relation % satisfies transitivity,
monotonicity, join dominance, and lower semicontinuity if and only if there is a closure
operator c on X for which x % y if and only if c(x) ≥ c(y). Suppose, furthermore, that
(X,≤) is meet semilattice. Then, the binary relation % further satisfies meet dominance if
and only if c further satisfies c(x ∧ y) = c(x) ∧ c(y) for all x, y ∈ X.

Proof. Suppose there is a closure c for which c(x) ≥ c(y) if and only if x % y. Monotonicity is
satisfied: if x ≥ y then c(x) ≥ c(y) by monotonicity of the closure, which implies x % y. Join
dominance is satisfied: suppose x % y. Then c(x) ≥ c(y) by the hypothesis. By extensitivity
of the closure, c(x) ≥ x and c(y) ≥ y, so (c(x)∨ c(y)) ≥ (x∨y). Therefore, idempotence and
monotonicity of the closure imply that c(x) = c(c(x)) = c(c(x)∨ c(y)) ≥ c(x∨ y), where the
second equality follows from c(x) ≥ c(y). Thus, x % (x∨y) by the hypothesis. Finally, lower
semicontinuity is satisfied: suppose C is a chain such that for all y ∈ C, x % y. Then by the
hypothesis c(x) ≥ c(y) and by extensitivity of closure c(y) ≥ y, so c(x) ≥ y for all y ∈ C.
Hence c(x) ≥

∨
y∈C y since (X,≤) is join complete. Using idempotence and monotonicity of

c we get c(x) = c(c(x)) ≥ c(
∨
y∈C y), or x %

∨
y∈C y.

Suppose further that the meet homomorphism property is satisfied: c(x∧y) = c(x)∧c(y).
Let x % y. By the hypothesis c(x) ≥ c(y), which implies c(x) ∧ c(y) = c(y). Therefore, by
meet homomorphism, we get c(x ∧ y) = c(y). Therefore, (x ∧ y) % y by the hypothesis, so
meet dominance is satisfied.

Conversely, suppose that a binary relation % satisfies transitivity, monotonicity, join
dominance, and lower semicontinuity. Define, for every x ∈ X,

c(x) =
∨
{z : x % z}.

We use a standard transfinite induction argument to prove that c(x) ∼ x.6

Let us well-order the set {y : x % y}, and call the resulting ordinal Λ, with order ≤∗.
Thus, we write {y : x % y} as {yλ}λ∈Λ. Let us define zλ =

∨
λ′≤∗λ yλ′ .

We claim that x % zλ for all λ ∈ Λ. There are three cases to consider.

1. First, in case λ = 0, the result is obvious as z0 = y0 ∈ {y : x % y}.

2. In case λ is a successor ordinal, we know that x % zλ−1 and x % yλ. By Lemma 1,
x % (zλ−1 ∨ yλ) = zλ.

6Here, ∼ denotes the indifference relation associated with %.
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3. In the third case, λ is a limit ordinal. Now, observe that {zλ′ : λ′ < λ} can be identified
with an ≤∗-chain (by identifying any pair λ′, λ′′ for which zλ′ = zλ′′). Therefore,
since x % zλ′ for each λ′ <∗ λ, we can apply lower semicontinuity and get x %∨
λ′:λ′<∗λ zλ′ . Now, since x % yλ, we can apply Lemma 1 to get x % ((

∨
λ′:λ′<∗λ zλ′) ∨

yλ) =
∨
λ′:λ′≤∗λ yλ′ = zλ′ .

Hence, we have shown that x % zλ for all λ ∈ Λ. Now, observe that {zλ : λ ∈ Λ} can
also be identified with an ≤∗-chain (by identifying any pair λ, λ′ for which zλ = zλ′). And
further observe that

∨
λ∈Λ zλ =

∨
λ∈Λ yλ = c(x). Hence, by lower semicontinuity, we get that

x % c(x). But since x ∈ {y : x % y} = {yλ}λ∈Λ, c(x) =
∨
λ∈Λ yλ ≥ x, so monotonicity implies

c(x) % x. Therefore, x ∼ c(x). Now, we show that the properties of c defining a closure are
satisfied.

1. Extensivity: x ∈ {z : x % z}, so c(x) =
∨
{z : x % z} ≥ x.

2. Monotonicity: Suppose x ≥ y. By monotonicity of %, we obtain x % y. Then, if
y % z, it follows by transitivity that x % z, so {z : x % z} ⊇ {z : y % z}. Therefore,
c(x) = ∨{z : x % z} ≥ ∨{z : y % z} = c(y).

3. Idempotence: Since x ∼ c(x), the sets {z : x % z} and {z : c(x) % z} coincide.
Therefore, c(x) = ∨{z : x % z} = ∨{z : c(x) % z} = c(c(x)).

Next, we show that c(x) ≥ c(y) if and only if x % y. Suppose that x % y. This implies
that, as in the proof of monotonicity, c(x) ≥ c(y). Conversely, if c(x) ≥ c(y), monotonicity
of the relation % implies that c(x) % c(y). Since c(x) ∼ x and c(y) ∼ y, we conclude that
x % y.

Finally, suppose that (X,≤) is a meet semilattice and that the relation % satisfies meet
dominance. Let x, y ∈ X. Monotonicity of the relation % implies that c(x) % (c(x) ∧ c(y))
and c(y) % (c(x) ∧ c(y)). Since c(x) ∼ x and c(y) ∼ y, we get that x % (c(x) ∧ c(y)) and
y % (c(x)∧c(y)). By meet dominance, (c(x)∧c(y)∧x) % (c(x)∧c(y)). By monotonicity and
transitivity, y % (c(x)∧c(y)∧x). Thus, meet dominance implies (c(x)∧c(y)∧x∧y) % (c(x)∧
c(y)∧x). Conclude by transitivity that (c(x)∧c(y)∧x∧y) % (c(x)∧c(y)). Again using the fact
that for arbitrary a, c(a) =

∨
{z : a % z}, we conclude that (c(x)∧c(y)) ≤ c(c(x)∧c(y)∧x∧y).

But c(x)∧ c(y)∧x∧ y = x∧ y since c is extensive; conclude (c(x)∧ c(y)) ≤ c(x∧ y). Finally,
we know that c(x) ≥ c(x ∧ y) and c(y) ≥ c(x ∧ y) (by monotonicity of the closure c) so that
c(x) ∧ c(y) ≥ c(x ∧ y), implying c(x ∧ y) = c(x) ∧ c(y).

Let us now consider a property of a binary relation R on X, which is anticipated by
several papers. See, for example, (Kreps, 1979; Nehring, 1999; Epstein and Marinacci, 2007;
Chambers and Echenique, 2008).

Ordinal submodularity: For all x, y, z ∈ X, if x R (x ∨ y), then (x ∨ z) R (x ∨ y ∨ z).
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It is easy to see that ordinal submodularity is implied by the combination of transitivity,
monotonicity, and join dominance: if x R (x ∨ y), then by monotonicity (x ∨ z) R x, so by
transitivity (x ∨ z) R (x ∨ y), and hence (x ∨ z) R (x ∨ y ∨ z) by join dominance.

The content of the following result is that even more than Theorem 1 is true: by weakening
join dominance to ordinal submodularity, we can describe relations that are monotonic with
respect to the ranking given by some closure operator. However, the relation need not
coincide with the ranking given by the closure.

In the following result, we use the notation R for the primitive binary relation reflecting
preference. This is because we will endogenously derive another relation % in the proof,
which will satisfy the hypotheses of Theorem 1.

Theorem 2. Suppose R is transitive and lower semicontinuous. Then R is monotonic and
ordinally submodular if and only if there is a closure operator c on X for which the following
are satisfied:

1. c(x) ≥ c(y) implies x R y, and

2. c(x) > c(y) implies x P y.7

Again, when all chains are finite, lower semicontinuity is vacuous.

Remark 1. Note that hypothesis 2 is crucial here. An axiomatization of relations for which
there exists a closure so that property 1 alone is satisfied would be based on completeness,
transitivity, and monotonicity alone. To see this, consider the identity closure c(x) = x
and observe that 1 is satisfied by monotonicity. Hence, the additional content of ordinal
submodularity is in adding the strict monotonicity hypothesis. In Kreps (1979), this is
reflected by all of the states being non-null. In Dekel et al. (2001), the corresponding theorem
allows null states. Presumably, by adding ordinal submodularity there, we would recover
non-nullity. This feature of ordinal submodularity is also what allows Epstein and Marinacci
(2007) to derive their result.

Proof. Suppose that R is monotonic and ordinally submodular. We proceed to show that 1
and 2 are satisfied.

Define a new relation % by x % y if x R (x ∨ y). We claim that % satisfies transitivity,
monotonicity, join dominance, and lower semicontinuity.

Transitivity follows thusly: Suppose x % y and y % z. Then x R (x∨ y) and y R (y ∨ z).
By ordinal submodularity applied to the last statement, we have (x ∨ y) R (x ∨ y ∨ z). By
transitivity, x R (x ∨ y ∨ z) and by monotonicity, (x ∨ y ∨ z) R (x ∨ z), so that again by
transitivity, x R (x ∨ z); conclude x % z.

Monotonicity also follows: suppose that x ≥ y. Since (x ∨ y) = x, so x R (x ∨ y); hence
x % y.

7Here, P is the strict part of R.
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Join dominance follows as if x % y, then x R (x∨y). Now, x % (x∨y) if x R (x∨(x∨y)) =
(x ∨ y), which holds.

Lower semicontinuity of % follows from lower semicontinuity of R: let C be a chain such
that for all y ∈ C, x % y. Then for all y ∈ C, x R (x ∨ y). Note then that the collection

{x∨ y : y ∈ C} can also be identified with a chain, so that x R
(∨

y∈C(x ∨ y)
)

. This implies

x R (x
∨
y∈C y), which is equivalent to x %

∨
y∈C y.

Hence, Theorem 1 implies that there is a closure c such that x % y if and only if
c(x) ≥ c(y).

Now, suppose c(x) ≥ c(y). We claim that x R y. Since c(x) ≥ c(y), we know that
x % y, from which we conclude x R (x∨ y) and since (x∨ y) R y by monotonicity, we get by
transitivity of R that x R y.

Suppose further that c(y) ≥ c(x) is false. We claim that x P y. Suppose by means of
contradiction that y R x. Then we have x I y,8 and since x R (x∨ y), we get by transitivity
of R that y R (x ∨ y), so that y % x, implying c(y) ≥ c(x), a contradiction.

Now, we show the converse that if there is such a closure then R satisfies monotonicity
and ordinal submodularity.

To see that monotonicity of relation R is satisfied, suppose x ≥ y. Then c(x) ≥ c(y) by
monotonicity of the closure c and hence x R y, so monotonicity is satisfied.

To see that ordinal submodularity is satisfied, let x, y, z ∈ X and suppose that x R (x∨y).
Since (x ∨ y) ≥ x, it follows that c(x ∨ y) ≥ c(x) by monotonicity of the closure c. If in fact
c(x∨y) > c(x), we would have (x∨y) P x, which is false. Thus c(x∨y) = c(x). Monotonicity
of the closure c implies that c(x∨ z) ≥ c(x) and c(x∨ z) ≥ c(z), so c(x∨ z) ≥ (c(x)∨ c(z)) =
(c(x∨ y)∨ c(z)) ≥ (x∨ y ∨ z) where the last inequality follows from extensitivity. Hence by
monotonicity of c, c(c(x∨z)) ≥ c(x∨y∨z). By idempotence of c, we have c(x∨z) ≥ c(x∨y∨z).
Hence (x ∨ z) R (x ∨ y ∨ z).

Some of the ideas in this proof appear in Kreps (1979).
Let us now show that a closure operator on a join-semilattice of nonempty subsets of

some given set can be written as an intersection of weak upper contour sets of some family
of weak orders (where a weak order is a relation % that is complete and transitive).

Theorem 3. Let (X,≤) be a join-complete semilattice of nonempty subsets of some set Y ,
with the usual intersection and union operations. Then c : X → X is a closure operator if and
only if there is a family W of weak orders on Y for which c(A) =

⋂
%∈W{x : ∃y ∈ A, y % x}.

This result can be compared to Richter and Rubinstein (2015), which establishes a related
result for linear orders. Theorem 3 is implicit in Kreps. Theorems 1 and 3, taken together,
imply Theorem 3 of Chambers and Miller (2018).

Proof. Showing that if there is a family W generating c in this fashion, then c is a closure is
simple and left to the reader.

8I denotes the indifference relation corresponding to R.
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For the converse, we construct W as follows. For each fixed point of c, where a fixed
point is a set for which c(A) = A, we define a relation represented by the following utility
function:

uA(x) =

{
0 if x ∈ A
1 if x 6∈ A

Let A ∈ X and let x ∈ c(A). We want to show that for all %∈ W , there is y ∈ A for
which y % x. So, fix any c(B) = B. If uB(x) = 0, then clearly there is y ∈ A for which
y % x. On the other hand, suppose that uB(x) = 1. This means that x 6∈ B. We need to
show that there is y ∈ A where y 6∈ B as well. If, in fact y ∈ A implies y ∈ B, then we would
have c(A) ⊆ c(B) by monotonicity of the closure, so that c(A) ⊆ B, contradicting x 6∈ B.

Conversely, suppose that for all %∈ W , there is y ∈ A for which y % x. In particular,
consider the relation induced by uc(A). Since y ∈ A ⊆ c(A), uc(A)(y) = 0, so we must have
uc(A)(x) = 0, implying x ∈ c(A).

This construction is due to Kreps; ultimately, many other constructions would work (for
example, one could construct the set of weak orders according to chains of fixed points; this
is what Kreps does, but he only considers binary chains, which is enough).

One could ask whether there is a similar result when requiring the family W to consist
of orders satisfying reasonable economic properties. To this end, let ≤∗ be a partial order
on some underlying set Y ; we will be interested in nonempty subsets of Y .9 Suppose now
that each element B ∈ 2Y under consideration is comprehensive, in the sense that if x ∈ B
and y ≤∗ x, then y ∈ B. We say that a binary relation % is monotone with respect to ≤∗ if
whenever x ≤∗ y, we have y % x.

Theorem 4. Let ≤∗ be a partial order on Y , and let (X,≤) be a lattice of nonempty and
comprehensive subsets of 2Y , with the usual intersection and union operations. Then c :
X → X is a closure operator if and only if there is a family W of weak orders on Y that are
monotone with respect to ≤∗ for which c(A) =

⋂
%∈W{x : ∃y ∈ A such that y % x}.

Proof. Observe that the construction in Theorem 3 results in weak orders that are monotone
in the case in which each B ∈ X is comprehensive.

3 Conclusion

The purpose of this technical note is twofold: to establish a version of Kreps’ (1979) classic
result without completeness and to show that much of the analysis in that paper extends to
more general lattices. Central to our analysis is the concept of a closure operator. It remains
to characterize environments for which there is either more structure on the closure operator,
or in the ranking of sets, when the weak orders can be endowed with more structure. For

9A partial order is reflexive, transitive, and antisymmetric.
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example, while Theorem 4 gives conditions for weakly monotone orders, one could ask for
strictly monotone orders. Likewise, in a suitably convex environment, one could ask for
convex weak orders.

Other questions relate to comparative statics across closure operators. On a finite lattice,
the set of closure operators is also a lattice. A useful exercise is to understand how these
closures interact.

Finally we mention a closely related strand of literature: path independent choice func-
tions, as defined in Plott (1973), are those which can be defined as the “extreme points” of
certain closure operators on the lattice of sets (again the convex geometries). See Koshevoy
(1999); Johnson and Dean (2001); Danilov and Koshevoy (2005) for example. Whether
one can define interesting generalizations of these concepts for general closure operators is
unknown to us. Chambers and Yenmez (2017) utilizes these ideas in the context of matching.
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