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A Measure of Bizarreness
Christopher P. Chambers∗ and Alan D. Miller†,‡

ABSTRACT

We introduce a path-based measure of convexity to be used in assessing the
compactness of legislative districts. Our measure is the probability that a dis-
trict contains the shortest path between a randomly selected pair of its points.
The measure is defined relative to exogenous political boundaries and population
distributions.

The upcoming decennial census will result in a new legislative redistricting process to
be completed in 2012. That year will also mark the two-hundredth anniversary of the
Gerrymander — that monster of American politics — the bizarrely shaped legislative
district drawn as a means to certain electoral ends.

An early diagnosis of this malady did not lead to an early cure. Already in the nine-
teenth century, reformers introduced anti-gerrymandering laws requiring districts to be
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“compact” and “contiguous”,1 but the disease spread unabated. District shapes grew
more odd over time as politicians used modern technology to increase their control over
elections. In 1812 a district was said to resemble a salamander; one hundred eighty years
later, another was likened to a “Rorschach ink blot test.”2

Redistricting reform has been hampered by a lack of agreement among experts as
to what a good districting plan should look like. Some believe that legislatures should
mirror the racial, ethnic, or political balance of the population. Others believe that it
is more important that districts be competitive or, alternatively, stable. This lack of an
ideal has made it difficult to design an algorithm which yields districting plans acceptable
to all.

Rather than make districts better by moving them closer to an ideal, we try to make
districts less bad by moving them further from an identifiable problem. That prob-
lem is bizarre shape. We introduce a new method to measure the bizarreness of a leg-
islative district. The method provides courts with an objective means to identify the
more egregious gerrymanders which weaken the citizens’ confidence in the electoral
system.

As with so many other aspects of redistricting, there is little agreement as to reason for
restricting bizarre shapes. Some argue that while the shape of legislative districts is not
important in and of itself, compactness restrictions constrain the set of choices available
to gerrymanderers and thereby limit their ability to control electoral outcomes. Others
believe that bizarrely shaped districts cause direct harm in the “pernicious” messages
that they send to voters and their elected representatives.3

Laws restricting the shapes of legislative districts have been unsuccessful, in part
because courts lack established criteria to determine whether a particular shape is allow-
able. Lawyers, political scientists, geographers, and economists have introduced multiple
methods to measure district compactness.4 However, none of these methods is widely
accepted, in part because of problems identified by Young (1988), Niemi et al. (1990),
and Altman (1998).

Part of the difficulty in defining a measure of compactness is that there are many
conflicting understandings of the concept. According to one view the compactness stan-
dard exists to eliminate elongated districts. In this sense a square is more compact than
a rectangle, and a circle may be more compact than a square. According to another

1 Thirty-five states require congressional or legislative districting plans to be compact, forty-five
require contiguity, and only Arkansas requires neither. See NCSL (2000). There may also be federal
constitutional implications. See Shaw v. Reno, 509 U.S. 630 (1993); Bush v. Vera, 517 U.S. 959
(1996).

2 Shaw v. Reno, 509 U.S. at 633.
3 “Put differently, we believe that reapportionment is one area in which appearances do matter.”

Shaw v. Reno, 509 U.S. at 647. The direct harm that arises from the ugly shape of the legislative
districts is generally referred to as an “expressive harm.” See Pildes and Niemi (1993).

4 “Contiguity” is generally understood to require that it be possible to move between any two places
within the district without leaving the district. See for example Black’s Law Dictionary which
defines a “contiguous” as touching along a surface or a point (Garner, 2004).
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view compactness exists to eliminate oddly shaped districts.5 According to this view a
rectangle-shaped district is better than a district shaped like a Rorschach blot.

We follow the latter approach. While it may be preferable to avoid elongated districts,
the sign of a heavily gerrymandered district is bizarre shape. To the extent that elongation
is a concern, it should be studied with a separate measure.6 These are two separate issues,
and there is no natural way to weigh tradeoffs between bizarreness and elongation.

We note that, in some cases, bizarrely shaped districts may be justified by compliance
with the Voting Rights Act of 1965.7 It is not clear whether any of these bizarre shapes
could have been avoided by districting plans which satisfy the constraints of the act.8

Whether a bizarrely shaped district is necessary to satisfy civil rights law is a matter for
the courts.9 Our role is only to provide a meaningful standard by which the court can
determine whether districts are bizarrely shaped.

The basic principle of convexity requires a district to contain the shortest path between
every pair of its points. Circles, squares, and triangles are examples of convex shapes,
while hooks, stars, and hourglasses are not. (See Figure 1.) The most striking feature
of bizarrely shaped districts is that they are extremely non-convex. (See Figure 2.) We
introduce a measure of convexity with which to assess the bizarreness of the district.

The path-based measure we introduce is the probability that a district contains the
shortest path between a randomly selected pair of its points.10 This measure always
returns a number between zero and one, with one being perfectly convex. To understand
how our measure works, consider a district containing two equally sized towns connected
by a very narrow path, such as a road. (See Figure 3(a).) Our method assigns this district a
measure of approximately one-half. A district containing n equally sized towns connected
by narrow paths is assigned a measure of approximately 1/n.11 (See Figure 3(b).) If the

5 Writing for the majority in Bush v. Vera, Justice O’Connor referred to “bizarre shape and
noncompactness” in a manner which suggests that the two are synonymous, or at least very closely
related. If so then a compact district is one without a bizarre shape, and a measure of compactness
is a measure of bizarreness.

6 Elongated districts are not always undesirable. See Figure 5.
7 See 42 U.S.C. 1973c.
8 Individuals involved in the redistricting process often attempt to satisfy multiple objectives when

creating redistricting plans. It may be the case that the bizarreness of these districts could be reduced
by sacrificing other objectives (such as creating safe seats for particular legislators) without hurting
the electoral power of minority groups. As a matter of law, it is not clear that the Voting Rights Act
necessarily requires bizarre shapes in any case.

9 The Supreme Court has held that, irrespective of the Voting Rights Act, “redistricting legislation
that is so bizarre on its face that it is ‘unexplainable on grounds other than race’ ” is subject to a
high level of judicial scrutiny. Shaw v. Reno, 509 U.S. at 643. See also Pildes and Niemi (1993).

10 Versions of this measure were independently discovered by Lehrer (2007) and Žunić and
Rosin (2002). These works do not discuss population weighting or exogenous boundaries.

11 Alternatively one might use the reciprocal, where the measure represents the equivalent number
of disparate communities strung together to form the district. The reciprocal is always a number
greater or equal to one, where one is perfectly convex. A district containing n towns connected by
narrow paths is assigned a measure of approximately n.
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Figure 1. Convexity.

n towns are not equally sized, the measure is equivalent to the Herfindahl–Hirschman
Index (Hirschman, 1964).12

Ideally, a measure of compactness should consider the distribution of the population
in the district. For example, consider the two arch-shaped districts depicted in Figure 4.
The districts are of identical shape, thus the probability that each district contains the
shortest path between a randomly selected pair of its points is the same. However, the
populations of these districts are distributed rather differently. The population of district
A is concentrated near the bottom of the arch, while that of district B is concentrated
near the top. The former district might represent two communities connected by a large
forest, while the latter district might represent one community with two forests attached.

Population can be incorporated by using the probability that a district contains the
shortest path between a randomly selected pair of its residents. In practice our informa-
tion is more limited — we do not know the exact location of every resident, but only the
populations of individual census blocks. We can solve this problem by weighting points
by population density. The population-weighted measure of district A is approximately
one-half, while that of district B is nearly one.13

One potential problem is that some districts may be oddly shaped simply because the
states in which they are contained are non-convex. Consider, for example, Maryland’s
Sixth Congressional District (shown in Figure 5 in gray). Viewed in isolation, this district
is very non-convex — the western portion of the district is almost entirely disconnected
from the eastern part. However, the odd shape of the district is a result of the state’s
boundaries, which are fixed. We solve this problem by measuring the probability that

12 If xi is the size of town i, then the measure of the district is
∑n

i=1 x2
i

[∑n
j=1 xj

]−2
.

13 Note that, under the population-weighted approach, a district may have a perfect score even though
it has oddly shaped boundaries in unpopulated regions. The ability to draw bizarre boundaries in
unpopulated regions is of no help to potential gerrymanderers.
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Figure 2. Congressional Districts, 109th Congress.

Figure 3. Towns connected with narrow paths.
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Figure 4. Same shapes, different populations.

Figure 5. Sixth District, Maryland, 109th Congress.

a district contains the shortest path in the state between a randomly selected pair of
its points. The adjusted measure of Maryland’s Sixth Congressional District is close
to one.

Our measure considers whether the shortest path in a district exceeds the shortest path
in the state. Alternatively, one might wish to consider the extent to which the former
exceeds the latter. We introduce a parametric family of measures which vary according to
the degree that they penalize deviations from convexity. At one extreme is the measure
we have described; at the other is the degenerate measure, which gives all districts a
measure of one regardless of their shape.

Related Literature

Individual District Compactness Measures

A variety of compactness measures have been introduced by lawyers, social scientists,
and geographers. Here we highlight some of basic types of measures and discuss some
of their weaknesses. A more complete guide may be found in surveys by Young (1988),
Niemi et al. (1990), and Altman (1998).

Most measures of compactness fall into two broad categories: (1) dispersion measures
and (2) perimeter-based measures. Dispersion measures gauge the extent to which the
district is scattered over a large area. The simplest dispersion measure is the length-to-
width test, which compares the ratio of a district’s length to its width. Ratios closer to
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one are considered more compact. This test has some support in the literature, most
notably from Harris (1964).14

Another type of dispersion measure compares the area of the district to that of an ideal
figure. This measure was introduced into the redistricting literature by Reock (1961), who
proposed using the ratio of the area of the district to that of the smallest circumscribing
circle. A third type of dispersion measure involves the relationship between the district
and its center of gravity. Measures in this class were introduced by Boyce and Clark
(1964) and Kaiser (1966). The area-comparison and center of gravity measures have
been adjusted to take account of district population by Hofeller and Grofman (1990) and
Weaver and Hess (1963), respectively.

Dispersion measures are widely criticized, in part because they consider districts rea-
sonably compact as long as they are concentrated in a well-shaped area. (See Young, 1988.)
We point out a different (although related) problem. Consider two disjoint communi-
ties strung together with a narrow path. Disconnection-sensitivity requires the measure to
consider the combined region less compact than at least one of the original communities.
None of the dispersion measures are disconnection-sensitive. An example is shown in
Figure 6.15

Perimeter measures use the length of the district boundaries to assess compact-
ness. The most common perimeter measure, associated with Schwartzberg (1966),
involves comparing the perimeter of a district to its area.16 Young (1988) objected to
the Schwartzberg measure on the grounds that it is overly sensitive to small changes
in the boundary of a district. Jagged edges caused by the arrangement of census
blocks may lead to significant distortions. While a perfectly square district receives
a score of 0.785, a square shape superimposed upon a diagonal grid of city blocks
has a much longer perimeter and a lower score, as shown in Figure 7(a).17 Figure 7
shows four shapes, arranged according to the Schwartzberg ordering from least to most
compact.

Taylor (1973) introduced a measure of indentation which compared the number of
reflexive (inward-bending) to non-reflexive (outward-bending) angles in the boundary

14 The length-to-width test seems to have originated in early court decisions construing compactness
statutes. See In re Timmerman, 100 N.Y.S. 57 (N.Y. Sup. 1906).

15 The length–width measure is the ratio of width to length of the circumscribing rectangle with
minimum perimeter. See Niemi et al. (1990). All measures are transformed so that they range
between zero and one, with one being most compact. The Boyce-Clark measure is

√
1/(1 + bc),

where bc is the original Boyce–Clark measure (Boyce and Clark, 1964). The Schwartzberg measure
used is the variant proposed by Polsby and Popper (1991) (originally introduced in a different
context by Cox, 1927), or (1/sc)2, where sc is the measure used by Schwartzberg (1966).

16 This idea was first introduced by Cox (1927) in the context of measuring roundness of sand grains.
The idea first seems to have been mentioned in the context of district plans by Weaver and Hess
(1963) who used it to justify their view that a circle is the most compact shape. Polsby and Popper
(1991) also supported the use of this measure.

17 The score of the resulting district decreases as the city blocks become smaller, reaching 0.393 in the
limit.
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Compactness Measures

District: I II

Dispersion Measures
Length-Width 0.63 1.00
Reock 0.32 0.44
Area to Convex Hull 0.57 0.70
Boyce-Clark 0.15 0.29

Other Measures
Path-Based Measure 0.84 0.42
Schwartzberg 0.29 0.14
Taylor 0.40 0.20

Figure 6. District II is formed by connecting district I to a copy of itself. Disconnection-
sensitivity implies that I is more compact.

Figure 7. Schwartzberg measure.

of the district. Taylor’s measure is similar to ours in that it is a measure of convexity.
Figure 8 shows six districts and their Taylor measures, arranged from best to worst.

Lastly, Schneider (1975) introduced a measure of convexity using Minkowski addi-
tion.18 For more on the relationship between convex bodies and Minkowski addition,
see Schneider (1993).

18 Schneider’s measure is closely related to an earlier measure of convexity introduced by Arrow and
Hahn (1971).
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Figure 8. Taylor’s measure.

Districting-Plan Compactness Measures

In addition to these measures of individual legislative districts, several proposals have
been introduced to measure entire districting plans. The “sum-of-the-perimeters” mea-
sure, found in the Colorado Constitution, is the “aggregate linear distance of all district
boundaries.”19 Smaller numbers indicate greater compactness. An alternative method
was introduced by Papayanopoulos (1973). His proposal can be described through a
two-stage process. First, in each district, the sum total of the distances between each
pair of residents is calculated. The measure for the plan is then the sum of these scores
across the districts. Smaller numbers again indicate greater compactness. More recently,
Fryer and Holden (2007) proposed a related measure which uses quadratic distance
and which is normalized so that an optimally compact districting plan has a score
of one.

A potential problem, raised by Young (1988), is that these measures penalize deviations
in sparsely populated rural areas much more severely than deviations in heavily populated
urban areas. For example, Figure 9 shows five potential districting plans for a four-district
state with sixteen equally sized population centers (represented by dots). The upper
portion of the state represents an urban area with half of the population concentrated
into one-seventeenth of the land. Papayanopoulos scores are given, although we note that
the sum-of-the-perimeters and Fryer–Holden measures give identical ordinal rankings
of these districting plans.

According to these measures, the ideal districting plan divides the state into four
squares (Figure 9(a)). The plan with triangular districts is less compact (Figure 9(b)),
and the plan with wave-shaped districts fares the worst (Figure 9(c)). However, the
measure is more sensitive to deviations in areas with lower population density. The

19 Colo. Const. Art. V, Section 47.
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Figure 9. Urban gerrymandering.

plan in Figure 9(d), which divides the rural area into perfect squares and the urban
area into low-scoring wave-shape districts, is considered more compact than the plan in
Figure 9(e), which divides the rural area into triangles and the urban area into perfect
squares.

An alternative approach is to rank state-wide districting plans using the scores assigned
to individual districts. Examples include the utilitarian criterion, which is the average
of the districts’ scores (see Papayanopoulos, 1973), and the maxmin criterion, which is
simply the lowest of the scores awarded the districts under the plan. This approach
allows for the ranking of both individual districts and entire districting plans as required
by Young (1988).

The ideal criterion depends in large part on the individual district measure with which
it is used. We advocate the use of the maxmin criterion with our path-based measure
on the grounds that it restricts gerrymandering the most. The maxmin criterion is
also consistent with the U.S. Supreme Court’s focus on analyzing individual districts
as opposed to entire districting plans.20 However, if some districts must necessarily be
noncompact (a common problem with the Schwartzberg measure) then the utilitarian
criterion may be more appropriate.

Other literature

Vickrey (1961) shows that restrictions on the shape of legislative districts are not neces-
sarily sufficient to prevent gerrymandering. In Vickrey’s example there is a rectangular

20 This focus might stem from the Court’s understanding of the right to vote as an individual right,
and not a group or systemic right. This understanding may have influenced other measures used in
the redistricting context, such as the “total deviation” test. See Edelman (2006).
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Figure 10. Vickrey’s example.

state in which support for the two parties (white and gray) are distributed as shown in
Figure 10. With one district plan, the four legislative seats are divided equally; with the
other district plan, the gray party takes all four seats. In both plans, the districts have the
same size and shape.

Compactness measures have been touted both as a tool for courts to use in determining
whether districting plans are legal and as a metric for researchers to use in studying the
extent to which districts have been gerrymandered. Other methods exist to study the
effect of gerrymandering — the most prominent of these is the seats–votes curve, which
is used to estimate the extent to which the district plan favors a particular party as well
as the responsiveness of the electoral system to changes in popular opinion. For more
see Tufte (1973).

THE MODEL AND PROPOSED FAMILY OF MEASURES

The Model and Notation

Let K be the collection of compact sets in R
n whose interiors are path-connected (with

the usual Euclidean topology) and which are the closure of their interiors. Elements
of K are called parcels. For any set Z ⊆ R

n let KZ ≡ {K ∈ K : K ⊆ Z} denote the
restriction of K to Z.

Consider a path-connected set Z ⊆ R
n and let x, y ∈ Z. Let PZ (x, y) be the set of

continuous paths g : [0, 1] → Z for which g (0) = x, g (1) = y, and g ([0, 1]) ⊂ Z.
For any path g in PZ (x, y), we define the length l (g) in the usual way.21 We define the
distance from x to y within Z as:

d (x, y; Z) ≡ inf
g∈PZ (x,y)

l (g) .

We define d
(
x, y; Rn) ≡ d (x, y). This is the Euclidean metric.

21 That is, suppose g : [0, 1] → Z is continuous. Let k ∈ N. Let (t0, ..., tk) ∈ R
k+1 satisfy for

all i ∈ {0, ..., k − 1}, ti < ti+1. Define lt (g) = ∑k
i=1

∥∥g (tk)− g
(
tk−1

)∥∥. The length (formally,
the arc length) of g is then defined as l (g) = supk∈N sup{t∈[0,1]k:ti<ti+1

} lt (g). Technically this
quantity may be infinite, but we abstain from a discussion of this issue as it appears to be of no
practical relevance.
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Let F be the set of density functions f : R
n → R+ such that

∫
K f (x)dx is finite for

all parcels K ∈ K. Let fu ∈ F refer to the uniform density.22 For any density function
f ∈ F , let F be the associated probability measure so that F(K) ≡ ∫

K f (x)dx represents
the population of parcel K .23

We measure compactness of districts relative to the borders of the state in which they
are located. Given a particular state Z,24 we allow the measure to consider two factors:
(1) the boundaries of the legislative district and (2) the population density.25 Thus, a
measure of compactness is a function sZ : KZ × F → R+.

The Basic Family of Compactness Measures

As a measure of compactness we propose to use the expected relative difficulty in traveling
between two points within the district. Consider a legislative district K contained within
a given state Z. The value d(x, y; K) is the shortest distance between x and y which can
be traveled while remaining in the parcel K . To this end, the shape of the parcel K makes
it relatively more difficult to get from points x to y the lower the value of

d (x, y; Z)
d (x, y; K)

. (1)

Note that the maximal value that Expression (1) may take is one, and its smallest
(limiting) value is zero. Alternatively, any function g(d(x, y; Z), d(x, y; K)) which is scale-
invariant, monotone decreasing in d(x, y; K), and monotone increasing in d(x, y; Z)
is interesting; Expression (1) can be considered a canonical example. The numerator
d(x, y; Z) is a normalization which ensures that the measure is affected by neither the
scale of the district nor the jagged borders of the state. We obtain a parameterized family
of measures of compactness by considering any q ≥ 0; so that [d(x, y; Z)/d(x, y; K)]q is
our function under consideration, defining[

d (x, y; Z)
d (x, y; K)

]∞
=
{

1, if d(x,y;Z)
d(x,y;K) = 1

0, otherwise
.

Note that for q = 0, the measure is degenerate. This expression is a measure of the
relative difficulty in traveling from points x to y. Our measure is the expected relative
difficulty over all pairs of points, or:

sq
Z (K , f ) ≡

∫
K

∫
K

[
d (x, y; Z)
d (x, y; K)

]q f (y) f (x)

(F(K))2
dy dx. (2)

22 We define fu(x) = 1.
23 Similarly, the uniform probability measure Fu(K) represents the area of parcel K .
24 The state Z is typically chosen from set K but is allowed to be chosen arbitrary; this allows the case

where Z = R
n and the borders of the state do not matter.

25 The latter factor can be ignored by assuming that the population has density fu.
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We note a few important cases. First, the special case of q = +∞ corresponds to the
measure described in the introduction, which considers whether the district contains
the shortest path between pairs of its points.26 Second, we can choose to measure either
the compactness of the districts’ shapes (by letting f = fu) or the compactness of
the districts’ populations (by letting f describe the true population density). Third, if
Z = R

n, our measure describes the compactness of the legislative district without taking
the state’s boundaries into consideration.

Discrete Version

Our measure may be approximated by treating each census block as a discrete point. This
may be useful if researchers lack sufficient computing power to integrate the expression
described in (2).

Let Z ∈ R
n be a state as described above, and let K ∈ KZ be a district. Let B ≡

R
n × Z+ be the set of possible census blocks, where each block bi = (xi , pi) is described

by a point xi and a non-negative integer pi representing its center and population,
respectively. Let Z∗ ∈ Bm describe the census blocks in state Z and let K∗ ⊂ Z∗
describe the census blocks in district K . The approximate measure is given by:

sq
Z∗ (K∗) ≡

∑
bi∈K∗

∑
bj∈K∗

[
d
(
xi , xj ; Z

)
d
(
xi , xj ; K

)]q

pi pj

∑
bi∈K∗

∑
bj∈K∗

pi pj

−1

.

DATA

To illustrate our measure we have calculated scores for all districts in Connecticut, Mary-
land, and New Hampshire during the 109th Congress. (See Figures 11–13.) Because of
limitations in computing power we use the discrete approximation.

Dark lines represent congressional district boundaries, while shading roughly follows
population distributions. Table 1 contains scores for our path-based measure as well as
three others: the Schwartzberg measure, the Reock measure, and Convex Hull measure,
which compares the area of a district to that of its’ Convex Hull.27 The small numerals in

26 Mathematically, there may be two shortest paths in a parcel connecting a pair of residents. The
issue arises when one state is not simply connected. For example, two residents may live on opposite
sides of a lake which is not included in the parcel. In this general case, our measure is the probability
that at least one of the shortest paths is contained in the district for any randomly selected pair of
residents.

27 In calculating the path-based measure, we have assumed a Mercator projection, so that the state
of Colorado would be considered convex. For other measures, we have projected districts onto a
spherical globe, to get accurate measurements of district area and boundary length. To calculate
perimeters for the Schwartzberg measure we summed the lengths of the line segments that form
the district boundary. In some cases, natural state boundaries (such as the Chesapeake Bay) added
significantly to the total length. The Census data we used did not allow us to calculate district
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Figure 11. Connecticut.

parentheses give the ordinal ranking of the district according to the respective measure.
Thus, according to our measure, Connecticut’s Fourth District is the most compact, with
a nearly perfect score of 0.977, followed by Maryland’s Sixth District (0.926). Maryland’s
Third District is the least compact with a score of 0.140, which makes it slightly less
compact than seven equally sized communities connected with a narrow path. (See
Figure 3). The Schwartzberg measure ranks Connecticut’s Second District as the most
compact and Maryland’s First District as the least compact. Like the Schwartzberg
measure, the Reock and Convex Hull measures rank Connecticut’s Second District
as the most compact district. The Reock measure, however, ranks Maryland’s Sixth
District as the least compact district, while the Convex Hull measure places Maryland’s
Second District in last place. For these fifteen districts, the ordinal rankings (between
our measure and the any of the other measures) agree on fewer than seventy-five percent
of the pairwise comparisons.

Our measure gives strikingly different results than the others with respect to Con-
necticut’s Fifth District and Maryland’s Sixth District. All assign a high rank to one

tri-junctions (as recommended by Schwartzberg, 1966), although it seems unlikely that this would
have a substantial effect on the calculation in this case. We do not know whether practitioners use a
different method to calculate these scores.



A Measure of Bizarreness 41

Figure 12. Maryland.

of the districts and a low rank to the other, but the order is reversed. The difference
primarily stems from two factors: state boundaries and population.

Maryland’s Sixth District has a very low area–perimeter ratio owing to its location
in the sparsely populated panhandle of western Maryland and to the ragged rivers
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Figure 13. New Hampshire.

which makes up its southern and eastern borders. Its long shape makes the minimum
circumscribing circle very large relative to its area, and its’ convex hull includes a lot
of territory outside of the district, mostly in West Virginia. Our path-based measure,
however, takes the state boundaries into account and thus gives this district a high score.

Connecticut’s Fifth District, however, has a much higher area-perimeter ratio: the
generally square shape of the district compensates for the two appendages protruding
from its eastern side. It also has high Reock and Convex Hull measures — the shape of
the district, with appendages, fits nicely into a circle, and the appendages are relatively
close to each other. However, the appendages reach out to incorporate several urban areas
into the district. (See for example, the southeastern portion of the northern appendage
and the eastern part of the southern appendage.) Because the major population centers
are relatively disconnected from each other, our path-based measure assigns this district
a low score of 0.481, which is slightly less compact than two equally sized communities
connected with a narrow path. (See Figure 3.)

Although the Reock and Convex Hull measures are similar (both compare the area
of the district to that of an ideal figure), they can produce very different results. For
example, Connecticut’s First District is assigned a high score by the Reock measure (the
outside of the district is roughly circular) but a low score by the Convex Hull measure
(it has a large hole on the inside). New Hampshire’s Second District, on the other hand,
is assigned a low score by the Reock measure (it is a long district from North to South)
but a high score by the Convex Hull measure. It received a low score according to the
path-based measure because the deviations from convexity are in the areas of highest
population density — the southeastern corner of the state.
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Table 1. Legislative district scores.

District Measure: Path-based Schwartzberg Reock Convex Hull

Connecticut:
1st 0.609 (8) 0.161 (9) 0.430 (3) 0.657 (10)

2nd 0.860 (4) 0.412 (1) 0.560 (1) 0.832 (1)

3rd 0.891 (3) 0.235 (4) 0.347 (4) 0.662 (9)

4th 0.977 (1) 0.305 (3) 0.293 (8) 0.676 (7)

5th 0.481 (12) 0.228 (5) 0.511 (2) 0.749 (2)

Maryland:
1st 0.549 (10) 0.016 (15) 0.283 (10) 0.520 (12)

2nd 0.294 (14) 0.019 (14) 0.200 (12) 0.377 (15)

3rd 0.140 (15) 0.029 (13) 0.194 (14) 0.402 (14)

4th 0.366 (13) 0.083 (11) 0.198 (13) 0.444 (13)

5th 0.517 (11) 0.066 (12) 0.299 (7) 0.684 (6)

6th 0.926 (2) 0.119 (10) 0.121 (15) 0.562 (11)

7th 0.732 (6) 0.174 (8) 0.339 (5) 0.727 (3)

8th 0.657 (7) 0.204 (7) 0.310 (6) 0.690 (5)

New Hampshire:
1st 0.801 (5) 0.290 (6) 0.293 (9) 0.670 (8)

2nd 0.561 (9) 0.370 (2) 0.233 (11) 0.705 (4)

CONCLUSION

We have introduced a new measure of district compactness: the probability that the
district contains the shortest path connecting a randomly selected pair of its points.
The measure can be weighted for population and can take account of the exogenously
determined boundaries of the state in which the district is located. It is an extreme point
in a parametric family of measures which vary according to the degree that they penalize
deviations from convexity.
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