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Abstract

We investigate a normative theory of incomplete preferences in
the context of preliminary screening procedures. We introduce a the-
ory of ranking in the presence of objectively incomparable marginal
contributions (apples and oranges). Our theory recommends bench-
marking, a method under which an individual is deemed more ac-
complished than another if and only if she has achieved more bench-
marks, or important accomplishments. We show that benchmark
rules are characterized by four axioms: transitivity, monotonicity,
incomparability of marginal gains, and incomparability of marginal
losses.

Introduction

This paper is devoted to a normative theory of incomplete preferences.
Our aim is to understand and provide a recommendation for a class of
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preliminary screening procedures that a committee or group may use to
simplify decision making. Whereas most work featuring incomplete prefer-
ences views the incompleteness as a mostly behavioral phenomenon, here
the lack of completeness is intended to be a normatively compelling prop-
erty that a group should require.

We illustrate our main ideas with an example. Employers making hiring
decisions commonly follow a two-stage process. The pile of candidates is
first winnowed according to objective criteria. Difficult cases that remain
are then resolved by an executive decision.

The objective criteria used to sort between candidates in the first stage
may not be directly comparable. For example, an academic employer may
care about both research and teaching, but will often not have a clear view
as to how to tradeoff the two. In idiomatic English, this is referred to as
the problem of comparing apples and oranges.

We provide a general theory of ranking in the presence of objects whose
marginal values are incomparable. Because of this inherent incommensu-
rability we necessarily seek a ranking that is incomplete. One can view
this ranking as an objective “meta-ranking,” in which all interested parties
agree. The meta-ranking is an object that can be “completed” in later
stages by specific parties. A large university may complete this ranking
differently than a small teaching college.

To understand our properties, consider our example of the two kinds
of activities pursued by academic economists: (a) publishing papers and
(b) teaching classes. Their marginal values depend on the other items
on the résumé. Suppose an economist can improve her résumé by either
publishing an extra paper or teaching an extra class. Which of the two is
more desirable?

Our first axiom, incomparability of marginal gains, requires that we not
make this choice: when both an additional publication and an additional
teaching experience add value to a résumé, these marginal contributions
must not themselves be comparable. We formalize this idea by requiring
that the two résumés that result from the addition of either of the accom-
plishments (but not both) are themselves incomparable.

We generalize the statement to sets of accomplishments: if two disjoint
sets of accomplishments are added to a given résumé, and each results in
a strict marginal gain, then these marginal contributions should not be
comparable.

Our second axiom is similar in nature and motivation to the first, ex-
cept that it concerns deletions from (and not additions to) the candidate’s
résumé. Suppose that both the removal of a publication and the removal
of a teaching experience would both weaken the candidate. Which dele-
tion should weaken the candidate more? Incomparability of marginal losses
requires that these two marginal losses not be comparable, again with a
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generalization to the removal of disjoint sets of accomplishments.
To illustrate the structure imposed by these new axioms, we provide

an example in which incomparability of marginal losses is violated (under
the assumption of transitivity). Consider three candidates, Alice, Bob, and
Charles, who are candidates on the academic job market. Alice has taken
all requisite courses but has not yet defended her dissertation. Bob has
defended his dissertation but has not yet completed his coursework. Charles
has both finished all courses and successfully defended his dissertation.
(We may think of Charles’ résumé as being the union of Alice’s and Bob’s
résumés, i.e. A ∪B.)

Charles qualifies for a PhD, and therefore might be viewed as better
than either Alice or Bob. (That is, A∪B � A and A∪B � B.) But, from
a pragmatic perspective, neither Alice nor Bob can be hired by an academic
department, and hence, they may be considered the same as a candidate
with a blank résumé (“∅”). (Thus, A ∼ ∅ and B ∼ ∅.) To the employer,
the coursework and the dissertation function as “extreme complements;”
neither of them have any value on their own, but together they are valued
highly.

This type of ranking is ruled out by the combination of the incompa-
rability of marginal losses and transitivity axioms. Specifically, removing
Charles’ coursework results in a strict loss. (A ∪ B � B.) Removing his
dissertation also results in a strict loss. (A ∪ B � A.) Incomparability of
marginal losses requires that Alice and Bob must be incomparable, but we
know that A ∼ ∅ ∼ B.

To these axioms we add two ancillary conditions. First, monotonic-
ity requires that additional accomplishments never harm the candidate.
Second, transitivity ensures that the method of comparison is a ranking.

We show that any method consistent with our axioms can be iden-
tified with a fixed list of relevant accomplishments, which we call bench-
marks. One candidate is stronger than another if and only if the former has
achieved all of the latter’s benchmarks. Every set of benchmarks gives us
a different ranking method; conversely, every benchmarking rule respects
the incommensurability of apples and oranges.

In terms of interpretation, observe that our primary axioms, incompa-
rability of marginal gains and losses, refer to what happens when accom-
plishments are either added to or deleted from a résumé. These properties
are “local.” For example, consider incomparability of marginal gains. The
axiom requires that, for a given résumé, if each of two distinct accomplish-
ments strictly add value to that résumé, then the new résumés with either
of the accomplishments added are incomparable. But the property only
requires the marginal contributions to be incomparable if both add value
to the given résumé. In principle, the accomplishments may add value to
one résumé, but have no effect on another. This contrasts with our derived
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concept of a “benchmark.” The addition of a benchmark strictly adds value
to any résumé, and the deletion of it strictly hurts a résumé. In this sense,
the notion of a benchmark is a “global” concept.

Our model allows the flexibility of understanding some accomplishments
as entailing others. There are at least two natural interpretations. The
“cumulative accomplishments” interpretation is based on the idea that an
accomplishment may be worth more when repeated. Being cited twice is
better than being cited once. The alternative interpretation is that some
accomplishments are normatively superior to others. One may think, for
example, that one programming language is more advanced than another,
or that one journal is superior to another. Neither of these examples can
be easily represented in our framework without an entailment relation.

That these two interpretations are similar, however, becomes clear if we
phrase them in the form of “at least” statements. If a paper has at least
two citations, it follows that this paper has received at least one citation.
If programming in Python is viewed to be objectively more advanced than
programming in Matlab, then the accomplishment of programming in a
language at least as advanced as Python entails the accomplishment of
programming in a language at least as advanced as Matlab. Similarly, if
there is an objective ranking of journals, so that all economists would agree
that Journal of Good Economics is more prestigious than Journal of Bad
Economics, then publishing at least one paper in a journal at least as good
as Journal of Good Economics implies that one has published at least one
paper in a journal at least as good as Journal of Bad Economics. The “at
least” language allows us to naturally combine these interpretations: the
accomplishment of publishing at least two papers in a journal at least as
good as Journal of Bad Economics would also entail the accomplishment
of publishing at least one paper in a journal at least as good as Journal
of Bad Economics, but not the accomplishment of publishing at least one
paper in a journal at least as good as Journal of Good Economics.

We take this entailment relation as a primitive of the model. Admissible
sets of accomplishments are restricted to respect the relation.

This entailment relation generates a particularly appealing structure for
rankings that are required to be complete; that is, in which all pairs are
comparable. The set of benchmarks for such a relation must be ordered
according to it. The structure here allows an easy comparison to previous
works that required completeness. It also allows us to easily construct new
benchmarking rules that are complete.

Benchmarking is used in a variety of settings. Universities may use
benchmarks in admissions. Investment firms use benchmarks when decid-
ing between projects. Consumers use benchmarks when buying computers.
Governments frequently use benchmark rules in assigning priorities in pro-
curement contracts. For the criteria used in determining eligibility for fed-
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eral contracts, see 48 C.F.R. Chapter 1. Schools may be compared among
among benchmarks, such as the scores that their students have received in
math, science, history, and literature. While this practice is controversial,
its study is important; large sums of federal money are allocated to schools
according to these metrics. In particular, the “adequate yearly progress”
requirements of the No Child Left Behind act (see 20 U.S.C. 6311) can
function like a benchmark rule under which schools are compared to them-
selves in prior years. Over $14 billion was allocated for these grants in
2014.

A common benchmark used in governmental hiring is the veterans’
preference, according to which a military veteran is deemed superior to
a non-veteran when they would otherwise be equivalent. Benchmarking
may not provide a complete ranking; Alice may be a veteran without work
experience, while Bob may be a non-veteran with work experience. But
the benchmark rule nonetheless provides valuable comparisons that can be
used by decision makers.

Federal courts evaluating the decisions of administrative agencies often
use benchmark rules in determining whether to uphold the agency decision.
For example, the Federal Communications Commission was held to have
acted unreasonably in awarding a television station to a broadcaster who
was weaker than another on all relevant criteria used by the commission.1

Administrative agencies themselves may choose whether particular criteria
are important enough to qualify as benchmarks.2 Benchmarking may be
used when comparing scholars by their citation profiles, as in Chambers
and Miller (2014b). Here, an accomplishment is a pair of two numbers
(x, y) where the individual has at least x publications with at least y cita-
tions each. The step-based indices characterized by Chambers and Miller
(2014b) are all benchmark rules, but the reverse is not true. For example,
the h-index (Hirsch, 2005) and the i-10 index are two popular measures
of scholarly accomplishment; each is a step-based index. However, many
believe that multiple such indices should be used in practice. A method
of comparison that determines Alice to be better than Bob if she is better
according to both measures would not be a step-based index, but would be
a benchmark rule. Benchmark rules are more versatile in that they can be
applied to a wider array of problems than can be the step-based indices.

We are not the first to study two-stage procedures in a decision or
choice-theoretic framework. For example, the pioneering paper of Manzini

1Central Florida Enterprises, Inc. v. Federal Communications Commission, 598
F.2d 37 (1979).

2For an example see Baltimore Gas & Electric Co. v. Natural Resources Defense
Council, 462 U.S. 87 (1983), which upheld the decision of the Nuclear Regulatory Com-
mission to ignore potential harm from the accidental release of spent nuclear fuel from
long term storage.
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and Mariotti (2007) uncovers the choice-theoretic implications of an indi-
vidual who lexicographically chooses from two asymmetric binary relations.
Our work can be viewed as axiomatizing a particular form for the “first
stage” relation described in this paper.

The relationship between the step-based indices and the benchmark
rules is not a coincidence, but can be seen in the axioms as well. Our
axioms imply two properties, meet and join dominance, which are weaker
forms of the lattice-theoretic notions of meet and join homomorphisms used
in Chambers and Miller (2014a,b). These properties were first studied in
economics by Kreps (1979) and have since been studied in a wide vari-
ety of settings. For example, Hougaard and Keiding (1998), Christensen
et al. (1999), and Chambers and Miller (2014a,b) study these axioms in the
context of measurement, while Miller (2008), Chambers and Miller (2011),
Dimitrov et al. (2012), Leclerc (2011), and Leclerc and Monjardet (2013)
study them in the context of aggregation. In fact, the results of Chambers
and Miller (2014b) can be derived from the much more general results we
establish here. The axiomatic system studied in that work is equivalent
to the combination of the four main axioms studied here together with
completeness. In this sense, a main contribution of the present work is the
absence of a completeness assumption. We leave a detailed connection to
Kreps (1979) to a later section.

Our work is also related to prior literature on incomplete preferences. It
is a relatively easy corollary of our main result that � satisfies our axioms
if and only if there is a family R of complete relations satisfying our axioms
such that for all x, y, x � y if and only if for all �∗∈ R, x �∗ y. This
explains our claim that � serves as a Pareto relation for interested parties.
One can think of this representation as being a “vector-valued” utility,
where each �∗ represents a component of the vector. Results of this type
were pioneered by Dubra et al. (2004) for the expected-utility case. Other
such results include Bewley (2002) for the case of Savage acts, Duggan
(1999) for the case of general binary relations, Donaldson and Weymark
(1998), Dushnik and Miller (1941), and Szpilrajn (1930).3

The Model

Let A be a non-empty set of accomplishments and let ≤ be a partial order
on A for which the set {a ∈ A : a ≤ x} is finite for all x ∈ A.4 The relation

3See also the work of Ok (2002) on incomplete preferences in economic environments,
and a choice theoretic foundation for incomplete preferences (Eliaz and Ok, 2006).

4A partial order is a binary relation that is reflexive, transitive, and antisymmetric.
The finiteness assumption is not substantive, and can be weakened by adding an appro-
priate continuity hypothesis. We assume it as it renders the proofs more transparent by
enabling the use of standard mathematical induction.
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≤ represents a “entailment” relation. For two accomplishments a, b ∈ A,
if b has been achieved and a ≤ b, then a has necessarily been achieved.
Several interpretations of this relation were discussed in the introduction;
we present an interpretation involving the ranking of scholars in an example
below. If one does not wish to consider a entailment relation, it is enough
to consider the relation given by {(a, a) : a ∈ A}; that is, equality.

A subset B ⊆ A is comprehensive if for all b ∈ B and a ∈ A, a ≤ b
implies that a ∈ B. For example, the subset of N2 (endowed with the usual
order) depicted in Figure 1(a) is comprehensive; for any point (x, y) in the
set, all points (x′, y′) with x′ ≤ x and y′ ≤ y are in the subset. By contrast,
the subset depicted in Figure 1(b) is not comprehensive; the point (2, 3) is
in the subset, but the points (2, 1) and (1, 3) are not.

1 2 3 4 5 6

1

2

3

4

(a) Comprehensive.

1 2 3 4 5 6

1

2

3

4

(b) Not Comprehensive.

Figure 1: Sets in N2

Let X be the set of all finite comprehensive subsets of A.5 An element
of X represents a logically consistent set of accomplishments.

We are interested in binary relations � on X used to compare logically
consistent sets of accomplishments. For two sets X, Y ∈ X , we write X ‖ Y
to denote that X and Y are not comparable with respect to �; i.e. neither
X � Y nor Y � X.6

We define four axioms on binary relations � on X . The first two,
transitivity and monotonicity, are standard in the literature. Transitivity
requires that the binary relation � be a ranking. Monotonicity requires
that the binary relation � prefer more to less.

Transitivity: For all X, Y, Z ∈ X , if X � Y and Y � Z, then X � Z.

Monotonicity: For all X, Y ∈ X , if X ⊇ Y , then X � Y .

5The set ∅ is obviously finite and comprehensive.
6To avoid confusion, we emphasize that there are three important binary relations

in this paper: ≤, �, and ⊆. Incomparability of � is denoted ‖. No notation is needed
for incomparability of ≤ or ⊆.
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Incomparability of marginal gains was described in the introduction.
Imagine that we start from a “baseline” set of accomplishments (X ∩ Y ).
Adding the marginal set of accomplishments (X\Y ) results in X, which is
deemed better than (X ∩ Y ). Adding the marginal (Y \X) results in Y ,
which is also deemed better than (X ∩ Y ). Since (X\Y ) ∩ (X\Y ) = ∅,
there are no common accomplishments in the marginals. Incomparability
of marginal gains requires that these marginal contributions be unranked,
which implies that X and Y must themselves be unranked.

Incomparability of Marginal Gains:
For all X, Y ∈ X , if X � (X ∩ Y ) and Y � (X ∩ Y ), then X ‖ Y .

Incomparability of marginal losses is similar. Imagine starting from a
baseline set of accomplishments (X ∪ Y ). Removing the marginal (Y \X)
results in X, which is deemed worse than (X ∪Y ). Similarly, removing the
marginal (X\Y ) results in Y , which is deemed worse than (X ∪ Y ). As
(X\Y ) and (Y \X) have no common elements, incomparability of marginal
losses requires that X and Y be unranked.

Incomparability of Marginal Losses:
For all X, Y ∈ X , if (X ∪ Y ) � X and (X ∪ Y ) � Y , then X ‖ Y .

A benchmarking rule is a binary relation � on X for which there
exists B ⊆ A such that, for all X, Y ∈ X , X � Y if and only if B ∩X ⊇
B ∩ Y . We refer to elements of B as benchmarks. Our main result is a
characterization of benchmarking rules.7

Theorem 1. A binary relation � on X satisfies transitivity, monotonicity,
incomparability of marginal gains, and incomparability of marginal losses
if and only if it is a benchmarking rule. Furthermore, the four axioms are
independent.

As an example, we can consider the environment in which ≤ is the
trivial order; that is, ≤ = {(a, a) : a ∈ A}. In this case, Theorem 1
states that a binary relation � on 2A satisfies the four axioms if and only
if there is a set B ⊆ A, for which for all X, Y ∈ 2A, X � Y if and only if
(X ∩B) ⊇ (Y ∩B).

Proof. Only if: Let � satisfy the four axioms. For x ∈ A, we define
K(x) ≡ {a ∈ A : a ≤ x}. Note that for each x ∈ A, K(x) ∈ X . For
x, y ∈ A, we write y < x if y ≤ x and y 6= x. For x ∈ A and Z ∈ X , we
say that x covers Z if x /∈ Z and y < x implies that y ∈ Z.

7The finiteness of the sets in X is necessary for our result. In the infinite case, an
example of a non-benchmarking rule that satisfies our axioms can be constructed using
free ultrafilters.
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Let
B = {x ∈ A : K(x) � K(x)\{x}}.

It is sufficient to show that for all C,Z ∈ X , (Z ∩B) ⊆ (C ∩B) if and only
if C � Z.

The proof now proceeds in four steps.

Step 1. By transitivity, monotonicity, and incomparability of marginal
gains, for all x ∈ B and Z ∈ X such that x covers Z, Z ∪ {x} � Z.

By monotonicity, (Z ∪ {x}) � Z. Suppose by means of contradic-
tion that (Z ∪ {x}) ∼ Z. By monotonicity, K(x) ⊆ (Z ∪ {x}) implies
that (Z ∪ {x}) � K(x). By the definition of B, K(x) � K(x)\{x}. By
transitivity, Z � K(x)\{x}. Because Z ∩ K(x) = K(x)\{x}, it follows
from incomparability of marginal gains that Z ‖ K(x). Consequently, as
(Z∪{x}) ∼ Z, we infer that (Z∪{x}) ‖ K(x), a contradiction which proves
the claim.

Step 2. By transitivity, monotonicity, and incomparability of marginal
losses, for all x /∈ B and Z ∈ X such that x covers Z, Z ∪ {x} ∼ Z.

By monotonicity, (Z ∪ {x}) � Z. Suppose by means of contradiction
that (Z ∪ {x}) � Z. By monotonicity, K(x)\{x} ⊆ Z implies that Z �
K(x)\{x}. By transitivity and the fact that x /∈ B, (Z ∪ {x}) � K(x).
Because Z ∪K(x) = (Z ∪{x}), it follows from incomparability of marginal
losses that Z ‖ K(x). Consequently, as x /∈ B, K(x)\{x} ∼ K(x), so that
Z ‖ (K(x)\{x}), a contradiction which proves the claim.

Step 3. For all C,Z ∈ X , Z � (Z ∩ C) if and only if B ∩ (Z\C) 6= ∅,

Let C,Z ∈ X . Let {z1, . . . , zk} ⊆ Z be a sequence such that: (1)
Z\{z1, . . . , zk} = Z ∩ C, and (2) x < zi implies that x ∈ Z\{zi, . . . , zk}.8
By step 1, if zi ∈ B, then Z\{zi+1, . . . , zk} � Z\{zi, . . . , zk}. By step 2, if
zi /∈ B, then Z\{zi+1, . . . , zk} ∼ Z\{zi, . . . , zk}. By transitivity, it follows
that B ∩ (Z\C) 6= ∅ if and only if Z � (Z ∩ C).

Step 4. Completion of the argument.

First, we prove that if C � Z, then (Z ∩ B) ⊆ (C ∩ B). Let C,Z ∈ X
such that C � Z. We need to show that (Z\C) ∩ B = ∅. By means of
contradiction suppose that (Z\C) ∩ B 6= ∅. By step 3, Z � (Z ∩ C). By
transitivity, C � (Z ∩ C). By incomparability of marginal gains, Z ‖ C, a
contradiction which proves the claim.

Next, we prove that if (Z ∩ B) ⊆ (C ∩ B), then C � Z. Let C,Z ∈ X
such that (Z ∩ B) ⊆ (C ∩ B). Because (Z ∩ B) ⊆ (C ∩ B) it follows that

8To construct such a sequence, let k = |Z\C| and inductively define zk to be ≤
maximal in Z\C, and zi to be ≤ maximal in (Z\C)\{zi+1, . . . , zk}.
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B ∩ (Z\C) = ∅. Therefore, by step 3, Z ∼ (C ∩ Z). By monotonicity,
C � (C ∩ Z), and thus by transitivity, C � Z.

If: Let � be a benchmarking rule with benchmarks B. The transitivity
of � follows from the transitivity of ⊇. To see this, let X � Y and Y � Z.
It follows that B∩X ⊇ B∩Y and B∩Y ⊇ B∩Z. Hence B∩X ⊇ B∩Z and
therefore X � Z. To see that � is monotonic, note that X ⊇ Y implies
that B ∩X ⊇ B ∩ Y and therefore that X � Y .

To see that incomparability of marginal gains is satisfied, suppose that
X � (X ∩Y ) and Y � (X ∩Y ). Since X � (X ∩Y ), B∩ (X\Y ) 6= ∅, and
since Y � (X ∩ Y ), B ∩ (Y \X) 6= ∅. Hence X ‖ Y .

To see that incomparability of marginal losses is satisfied, suppose that
(X ∪ Y ) � X and (X ∪ Y ) � Y . Since (X ∪ Y ) � X, B ∩ (Y \X) 6= ∅ and
since (X ∪ Y ) � Y , B ∩ (X\Y ) 6= ∅. Thus X ‖ Y .

To prove the independence of the axioms, we provide four examples of
rules that are not benchmarking rules. Each of these rules satisfies three
of the axioms while violating the fourth.

Our first example is a class that we call the benchmark-majority rules ;
rankings that are formed through the majoritarian aggregation of a set of
benchmark rules.

Benchmark-majority rules: � is a benchmark-majority rule if there ex-
ists a finite set of benchmark rules {�i}ni=1 such that, for allX, Y ∈ X ,
X � Y if and only if |{i : X �i Y }| > n

2
.

All members of the class satisfy monotonicity, incomparability of marginal
gains, and incomparability of marginal losses. This class includes the
benchmark rules but also many non-benchmark methods that do not sat-
isfy transitivity. For our purpose it is sufficient to show that at least one
member of this class that is intransitive.

Claim 1. Benchmark-majority rules satisfy monotonicity, incomparabil-
ity of marginal gains, and incomparability of marginal losses, but are not
necessarily transitive.

Our second example is the trivial order, according to which distinct
elements of X are not comparable. This rule satisfies all axioms except for
monotonicity.

Trivial order: For all X, Y ∈ X , X � Y if and only if X = Y .

Claim 2. The trivial order satisfies transitivity, incomparability of marginal
gains, and incomparability of marginal losses, but not monotonicity.
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A weak order is a binary relation that is complete and transitive. Our
third example is the indirect utility ranking (see Kreps, 1979).

Indirect utility rankings: � is an indirect utility ranking if there exists
a weak order <• over A such that, for X, Y ∈ X , X � Y if and only
if for each c ∈ Y , there is a ∈ X for which a<• c.

Claim 3. Indirect utility rankings satisfy transitivity, monotonicity, and
incomparability of marginal losses, but may fail incomparability of marginal
gains.

Our fourth example is the dual of the indirect utility ranking. There
are several ways to understand it, but perhaps the easiest is that a set is
as good as the worst element it does not contain.

Dual indirect utility rankings: � is a dual indirect utility ranking if
there exists a weak order <• over A such that, for X, Y ∈ X , X � Y
if and only if for each a /∈ X, there is c /∈ Y for which a<• c.

Claim 4. Dual indirect rankings satisfy transitivity, monotonicity, and
incomparability of marginal gains, but may fail incomparability of marginal
losses.

The relation �B is the benchmarking rule associated with B as a set
of benchmarks. We provide a basic comparative static result that relates
nested sets of benchmarks to benchmarking rules. When the set of bench-
marks expands, the set of weak rankings between pairs decreases, and con-
versely. An important implication of this result is that we can identify each
benchmarking rule with a unique set of benchmarks.

Write �⊆�′ if and only if X � Y implies that X �′ Y .

Theorem 2. For two sets of benchmarks B and B′ with associated bench-
marking rules �B and �B′, B ⊆ B′ if and only if �B′⊆�B.

Complete benchmarking rules enjoy additional structure. Namely, all
benchmarks must be comparable according to the entailment relation ≤.

Completeness: For all X, Y ∈ X , either X � Y or Y � X.

The following corollary explains our particular interest in the relation
≤.

Corollary 1. A benchmarking rule � is complete if and only if its associ-
ated set of benchmarks B has the property that for all a, b ∈ B, either a ≤ b
or b ≤ a.
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Let us return to the case in which ≤ = {(a, a) : a ∈ A}; that is,
the trivial order. Complete benchmarking rules in this environment are
rather uninteresting. Here, the only sets B satisfying the property listed
in Corollary 1 are the singleton sets and the empty set. This means that a
complete benchmarking rule can take one of two forms. In the first case, it
could be complete indifference (when B = ∅). If, instead, B is a singleton,
say B = {b}, then the rule has exactly two indifference classes. Every X
for which b ∈ X is in the higher indifference class, and every X for which
b /∈ X is in the lower. Hence, such a rule is a kind of “pass-fail” rule,
whereby a pass is recorded if accomplishment b is achieved, and fail if not.
So, if |A| < +∞, there are exactly |A| + 1 complete benchmarking rules
when ≤ is trivial.

In contrast, when ≤ is more interesting; say, as the standard order on
Z2

+, a much richer structure of complete benchmarking rules emerges. And
in fact, Corollary 1 generalizes the earlier results of Chambers and Miller
(2014b), where ≤ is the standard order on Z2

+. It is also conceptually
related to earlier literature on efficiency measurement; e.g. (Hougaard and
Keiding, 1998; Christensen et al., 1999; Chambers and Miller, 2014a). This
earlier literature works on a space in which there are no nontrivial finite
comprehensive sets. Generalizing our results to such environments requires
the imposition of continuity properties; we leave this to future research.

We present the corollary affording the interpretation of benchmarking
rules as Pareto relations of interested parties.

Corollary 2. For any benchmarking rule �, there is a family R of complete
benchmarking rules for which for all X, Y ∈ X , X � Y if and only if for
all �∗∈ R, X �∗ Y .

Ranking Scholars

Academic institutions often use influence measures to compare scholars in
terms of citations to their scientific publications. Popular influence mea-
sures include the h-index (Hirsch, 2005), the largest number h such that
the scholar has at least h publications with at least h citations each, the
i10-index, the number of publications with at least ten citations each, and
the citation count, the combined number of citations to all of the author’s
publications.9 Chambers and Miller (2014b) study a model of influence
measures and characterize the family of step-based indices. What were
termed “steps” in this previous paper are the benchmarks here.

Influence measures can be studied in our framework. Let A ≡ N× Z+,
the set of pairs of integers (m,n) where m is positive and n is non-negative;

9These particular measures are widely used, in part, due to their inclusion in the
internet service “Google Scholar Profiles,” available at http://scholar.google.com/.
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each pair is the accomplishment that the scholar has published at least m
papers with at least n citations each. Let ≤ be the natural order, where
(m,n) ≤ (m′, n′) if and only if m ≤ m′ and n ≤ n′. For example, the
accomplishment of publishing at least 3 papers with at least 2 citations each
entails the accomplishment of publishing at least 2 papers with at least 2
citations each. A scholar is a comprehensive collection of these pairs; the set
of scholars is equivalent to the set X of all finite comprehensive subsets of
A. A step-path (See Chambers and Miller, 2014b) is a function P : N→ A,
such that n > n′ implies that P (n) ≥ P (n′), where each P (n) is a step.
A step-based index is a ranking � for which, for S, S ′ ∈ X , S � S ′ if and
only if P (n) ∈ S ′ implies that P (n) ∈ S for all n ∈ N.

One can readily see that the set of step-based indices is identical to
the set of complete benchmark rules in this setting. Corollary 2 explains
the broader relation between benchmark rules and step-based indices. For
every benchmark rule there is a collection of {�i} of step-based indices for
which x � y if and only if x �i y for all i; similarly every collection of
step-based indices induces a benchmark rule.

For example, the h-index and the i6-index (the number of publications
with at least six citations each) are step-based indices and benchmark rules.
The benchmarks for these rules are depicted in Figures 2(a) and 2(b), re-
spectively. One can see that they are complete; all benchmarks are com-
parable according to ≤. According to the h-index, scholars B and C are
equivalent and each dominates scholar A. According to the i6-index, on the
other hand, scholar C dominates scholar A, and each of them dominates
scholar B.

From these two indices we can construct a composite benchmark rule,
under which a scholar is at least as good as another if the former scholar
is at least as good according to both the h-index and the i6-index. This
is shown in Figure 2(c). Under this composite rule, scholars A and B
are incomparable, but both are dominated by scholar C. In the context
of ranking scholars, every collection of step-based indices can generate a
benchmark rule in this manner, and every benchmark rule can be generated
by some collection of step-based indices.

On the connection with Kreps (1979)

This paper is inspired by, and related to, the work of Kreps (1979). Kreps’
work does not include an entailment relation ≤, and so can be thought of
as the case in which ≤ is the trivial relation. Further, Kreps is interested in
the set of nonempty subsets of some finite set A, whereas sets in our domain
can be empty. Kreps’ focus is decision theoretic. He interprets these sets
as menus of objects, from which a decision maker has the opportunity to
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Figure 2: Ranking Scholars.
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choose from an implicit second-stage. Kreps’ results do not hold exactly
as stated here for the domain of all sets, so we are explicit here when the
domain includes only nonempty sets.10

Kreps does not use our properties per se, but he does discuss a variant
of the following property, which we termed “join dominance” in other work:
For all X, Y ∈ X , X � Y implies X � (X ∪ Y ).11 The following is true.

Proposition 1. Assume that � on X satisfies monotonicity and transitiv-
ity. Then � satisfies join dominance if and only if it satisfies incompara-
bility of marginal losses.

Proof. Suppose that incomparability of marginal losses, monotonicity, and
transitivity are satisfied, and let X � Y . By monotonicity, (X ∪ Y ) � X;
suppose by means of contradiction that (X∪Y ) � X. Then by transitivity,
(X ∪ Y ) � Y as well. By incomparability of marginal losses, we conclude
X ‖ Y , a contradiction. Conversely, suppose that join dominance is satis-
fied and that (X ∪ Y ) � X and (X ∪ Y ) � Y . We claim that X ‖ Y ; for if
not we can suppose, without loss of generality, that X � Y . Then by join
dominance, we have X � (X ∪ Y ), again a contradiction.

We claim below that Kreps implicitly provided a characterization of
relations � satisfying monotonicity, transitivity, and incomparability of
marginal losses. Thus, aside from the technical details mentioned at the
beginning of this section, our contribution is to uncover what happens when
adding incomparability of marginal gains.

The complete case

Kreps uses join dominance on complete and transitive rankings � of X to
derive a notion of indirect utility. The following result is not given a formal
status of a theorem by Kreps, but is discussed in the paragraph following
his introduction of the property.

Proposition 2. A relation � on X \ {∅} satisfies completeness, transi-
tivity, monotonicity, and join dominance if and only if there is a complete
and transitive relation �∗ on A for which for all X, Y ∈ X , X � Y if and
only if for all y ∈ Y , there is x ∈ X for which x �∗ y.

10For example, if the empty set were permitted in Proposition 2, then the repre-
sentation would require it be ranked strictly below all nonempty sets. But, complete
indifference of � obviously satisfies all of the axioms and does not have this representa-
tion. With the empty set, there are two possibilities: either it is strictly worse than all
nonempty sets, or it is weakly worse and indifferent to the lowest ranked nonempty set.
Kreps avoids this distinction by restricting the domain to nonempty sets.

11Kreps’ version of this axiom is a join homomorphism property (see property (1.2) on
p. 565). Join dominance is implied by the combination of Kreps’ axiom and monotonic-
ity, and the latter combination is equivalent to join dominance under the assumption of
completeness.
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We call the representation in Proposition 2 an “indirect utility” rep-
resentation because the preference over menus (or budgets) is determined
uniquely by a ranking over the singleton alternatives, with each menu es-
sentially being indifferent to its best element.

To this, we have added another axiom. This axiom is “dual” to join
dominance, and we call it meet dominance: for all X, Y ∈ X , if X � Y ,
then (X ∩ Y ) � Y . As in Proposition 1, it is equivalent to incomparability
of marginal gains in the presence of transitivity and monotonicity.12

Adding the meet dominance property to Kreps’ properties and working
on the domain of all sets delivers Corollary 1. This tells us that for each
relation � over X satisfying the axioms join dominance, meet dominance,
monotonicity, completeness, and transitivity, there is a linearly ordered
subset of A, which are to be taken as benchmarks.13 In particular, in the
case where ≤ is trivial, there are exactly |A|+ 1 linearly ordered sets: each
a ∈ A forms a singleton linearly ordered set, and the empty set is a linearly
ordered set.

To see how this fits with a special case of Proposition 2, observe that
each b ∈ A induces a ranking �b over A, where for all a ∈ A \ {b}, {b} �b
{a}, and for all a, c ∈ A \ {b}, {a} ∼ {c}. Hence, �b has exactly two
indifference classes. At the top is b, and everything else is ranked strictly
below b (and indifferent). For a benchmarking relation � with a singleton
benchmark B = {b}, by taking �b to be �∗ in Proposition 2, we get
�. On the other hand, if � is benchmarking relation with the empty set
as benchmarks, the ranking �∗ derived in Proposition 2 corresponds to
complete indifference over A.

The incomplete case

Less well-known is the fact that Kreps generalizes Proposition 2 in the proof
of his main theorem with an extremely clever argument. The following
result can be easily derived by appropriately adapting the construction
he develops there. We will not replicate the argument here as it can be
understood through a careful reading of his proof, or as a special case of
our more general lattice-theoretic argument, appearing in Chambers et al.
(2015).14

12Meet dominance is formally dual to join dominance in the following sense: given a
relation � over X satisfying join dominance, the relation �∗ defined by X �∗ Y if and
only if (A \ Y ) � (A \X) satisfies meet dominance, and conversely. This motivates our
notion of dual indirect utility above. Observe that the properties of monotonicity and
transitivity are self-dual in the same sense.

13Monotonicity is implied by the combination of completeness and join dominance.
14Kreps actually uses a slightly distinct collection of axioms to derive this result. The

axioms he uses are:

1. Transitivity
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Theorem 3. Suppose that � over X \ {∅} is monotonic, transitive, and
satisfies join dominance. Then there is a family of complete and transitive
relations {�λ}λ∈Λ over A, such that for all X, Y ∈ X , X � Y if and only
if for all λ ∈ Λ and all y ∈ Y , there is x ∈ X such that x �λ y.

This representation can be viewed as a “vector-valued” indirect utility
representation in the sense of the introduction. Importantly, there is no
uniqueness or identification result here. There are many representations of
the type described in Theorem 3.

Even though our result stems from adding an axiom to Theorem 3, the
nonuniqueness inherent in Theorem 3 introduces a difficulty. To prove The-
orem 1, we need to establish that there is one vector-valued representation
(out of potentially many) that takes the form we characterize. So, we do
not simply take a uniquely identified representation and find what happens
when adding an axiom.

Theorem 1 can be related to Theorem 3 in the same way we related
Corollary 1 and Proposition 2. Theorem 3 claims there is a set of relations,
{�λ}. In the benchmarking case, suppose that � is associated with set of
benchmarks B, which we will suppose is nonempty. Each b ∈ B is associated
with a relation �b, as described after Proposition 2. We take the set of
relations in Theorem 3 to be {�b}b∈B. Then, for any sets X, Y , observe
that X � Y if and only if b ∈ Y implies b ∈ X, which is the same as saying
that for every b ∈ B and every y ∈ Y , there exists x ∈ X such that x �b y.

Embedding our result into Kreps’ main theorem

There is more to discuss. The primary focus of Kreps’ work is to consider a
complete relation �′ over nonempty sets, from which an auxiliary relation
� satisfying the axioms of Theorem 3 is described. The auxiliary relation
� and the relation �′ are related by extension: in Kreps’ axiomatization,
it follows that X � Y implies X �′ Y and X � Y implies X �′ Y . Kreps
does this by introducing another axiom, termed ordinal submodularity in
Chambers and Echenique (2016):

Ordinal Submodularity : For all X, Y, Z ∈ X , X ∼′ (X ∪ Y ) implies
(X ∪ Z) ∼′ (X ∪ Y ∪ Z).

Kreps uses ordinal submodularity to prove the following result:

2. Monotonicity

3. Z ⊆ Y � X implies Z � X

4. X � Y and Z �W implies (X ∪ Z) � (Y ∪W )

5. For every X, there exists Y such that X � Z if and only if Z ⊆ Y .

17



Theorem 4. The following are equivalent for a binary relation �′ on X \
{∅}.

1. �′ satisfies completeness, transitivity, monotonicity and ordinal sub-
modularity.

2. There is a collection of utility functions {uλ}λ∈Λ, where uλ : A→ R,
and a strictly monotone function v : RΛ → R such that U(X) =
v(maxx∈X uλ(x)) represents �′.

3. There is a collection of utility functions {uλ}λ∈Λ, where uλ : A→ R,
such that

U(X) =
∑
λ∈Λ

max
x∈X

uλ(x)

represents �′.

We sketch the relationship between parts 1 and 2 of the theorem. Define
the auxilary relation � on X \ {∅} by X � Y if and only if X ∼′ (X ∪Y ).
Note that the axioms of part 1 imply that the axioms of Theorem 3 are
satisfied for �; in particular, ordinal submodularity is used to establish
the transitivity of �. From the definition of � it is simple to see that
X � Y implies X �′ Y and X � Y implies X �′ Y . Consequently, from
Theorem 3 it follows that � has a vector utility representation; this in
turn implies that there is a strictly monotone function v such that U(X)
represents �′. For further details see Kreps.

This suggests that adding an additional axiom to �′ would be enough
to guarantee that the endogenously derived � would also satisfy meet dom-
inance.

Meet Join Consistency : For all X, Y ∈ X , X �′ (X ∪ Y ) implies
(X ∩ Y ) �′ Y .15

Corollary 3. Suppose that �′ on X satisfies completeness, transitivity,
monotonicity, ordinal submodularity, and meet join consistency. Then the
relation � defined by X � Y if and only if X ∼′ (X ∪ Y ) satisfies the
axioms of Theorem 1.

Proof. Most of the axioms were already established by Kreps, but we here
establish meet dominance. The satisfaction of these axioms holds true even
when including the empty set, as is easily verified.

So, suppose that X � Y . Then X �′ (X ∪ Y ). Consequently, by meet
join consistency, (X ∩ Y ) �′ Y . Hence (X ∩ Y ) � Y .

15An anonymous referee also suggests a weakened version, X �′ Y �′ (X ∩Y ) implies
(X ∪ Y ) �′ X.
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Let us rule out the case of complete indifference by postulating the
following:

Nondegeneracy : There exists X, Y ∈ X for which X �′ Y .

We therefore obtain the following corollary.

Corollary 4. Suppose that |A| < +∞. A relation �′ on X satisfies com-
pleteness, transitivity, monotonicity, nondegeneracy, ordinal submodular-
ity, and meet join consistency if and only if there is a nonempty set B ⊆ A
and a strictly monotonic capacity v : 2B → R such that U(X) = v(B ∩X)
represents �′. Furthermore, the set B is unique.

Proof. It is easy to verify that the axioms are satisfied if the representation
holds.

Conversely, observe that the derived representation � from the preced-
ing corollary satisfies the axioms of Theorem 1, so that there is B 6= ∅ for
which X � Y if and only if (Y ∩B) ⊆ (X ∩B). Now, observe that X � Y
implies X �′ Y , by construction, and further, X � Y implies X �′ Y .
This completes the proof, as we may now take v to be any function strictly
monotonic in B ∩X that gives the desired representation �′. Uniqueness
of B is straightforward.

On the other hand, it is not without loss of generality to assume a rep-
resentation as in part 3 of Theorem 4, where additivity across the elements
b ∈ B prevails. Observe that additivity in this case means representation
via a probability measure on B. It is well-known that a strictly monotonic
capacity need not be ordinally equivalent to a probability measure.16 In
fact, Kraft et al. (1959) demonstrate that this is true even for a strictly
monotonic capacity that satisfies a well-known additivity axiom of decision
theory. Kraft et al. (1959, Theorem 2) also provide conditions for a rela-
tion on a finite algebra to be represented by a probability measure. Scott
(1964) provides a simplified proof and exposition based on the theorem of
the alternative.

We do not describe the axiomatization here, but the conditions can be
found in Scott (1964). We refer to these axioms as the “axioms of Kraft
et al. (1959).”

Theorem 5. Suppose |A| < +∞. Then there is B 6= ∅ and a probability
measure π on 2B such that X �′ Y ⇔ π(B ∩X) ≥ π(B ∩ Y ) if and only if
�′ satisfies the axioms of Kraft et al. (1959).

The question remains as to whether similar variants of these results
hold with a nontrivial ≤. The answer is yes, and this type of question is
pursued in more detail in Chambers et al. (2015).

16For example, take any strictly monotonic capacity on three elements {a, b, c} where
v({a}) = v({b}) = v({c}), but v({a, b}) 6= v({a, c}).
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Conclusion

We have described a method of comparison that we term “benchmarking.”
Benchmark rules are characterized by four axioms, transitivity, monotonic-
ity, incomparability of marginal gains, and incomparability of marginal
losses.

Benchmark rules are not necessarily complete, and can be used in cases
where completeness is considered undesirable or is otherwise not required.
One can see that a benchmark rule will satisfy completeness if and only if
the benchmarks are totally ordered. In the case of ranking scholars, this
implies that they must form a step-based index.

In some cases it may seem as if, in practice, the benchmark rule is
simply a comparison according to set-inclusion. This does not necessarily
mean that all potential accomplishments are benchmarks. Alternatively,
it may be that only benchmarks are included on résumés. This would be
expected if the rule were to be known with certainty.

In other cases, however, résumés often include accomplishments that are
not benchmarks. One might ask why this would occur. As we noted, this
might come across as a result of uncertainty about the rule. However, there
are other possibilities. One is that the applicant finds it efficient to use the
same résumé for multiple employers, or in multiple markets, where different
rules may be applied. Alternatively, as we explained in the introduction,
the benchmark rule might be used only as a first step in sorting applicants;
the otherwise extraneous information might still be relevant when making
an executive decision.

Appendix

Proof of Claim 1. Let � be a benchmark-majority rule. To see that � is
monotone, let X ⊇ Y . Because the benchmark rules are monotone, it
follows that X �i Y for all i and thus X � Y .

To see that � satisfies incomparability of marginal gains, let X �
(X ∩ Y ) and Y � (X ∩ Y ), and suppose contrariwise that X and Y are
comparable. Without loss of generality assume that X � Y . By mono-
tonicity of �i, X �i (X ∩ Y ) and Y �i (X ∩ Y ) for all i. It follows that
for all i, X �i Y only if Y ∼i (X ∩ Y ). Thus |{i : Y ∼i (X ∩ Y )}| > n

2
.

However, because Y � (X ∩ Y ) it follows that |{i : Y ∼i (X ∩ Y )}| ≤ n
2
, a

contradiction.
Incomparability of marginal losses follows from a similar argument.
To see that some benchmark-majority rules violate transitivity, consider

the case where A = {1, . . . , n} with ≤ being the trivial order, and suppose
that n ≥ 3. Let�i be the benchmark rule with set of benchmarks {i}. Then
it is easy to see that, for all k < n,

⋃k
i=1{i} �

⋃k+1
i=1 {i}, but A � {1}.
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Proof of Claim 2. Transitivity of � follows from transitivity of =. The
relation � is symmetric, so there are no strict rankings. Thus, this trivially
satisfies incomparability of marginal gains and incomparability of marginal
losses. However, this rule is not monotone. To see this, let X ( Y . Then
Y � X, a violation of monotonicity.

Proof of Claim 3. Clearly, � is transitive and monotonic.
The rule satisfies incomparability of marginal losses, as there is no

X, Y ∈ X for which (X ∪ Y ) � X and (X ∪ Y ) � Y . To see this, let
X, Y ∈ X and suppose that (X ∪ Y ) � X and (X ∪ Y ) � Y . Since
(X ∪ Y ) � X, there is a ∈ (Y \X) for which a�• c for all c ∈ X. And since
(X ∪ Y ) � Y , there is d ∈ (X\Y ) for which d�• c for all c ∈ Y . Then we
have a�• d and d�• a, a contradiction.

However, this rule violates incomparability of marginal gains. To see
this, let A = {1, 2} where ≤ is defined so that no two distinct items are
comparable. Observe that {1} � ∅ and that {2} � ∅, yet � is complete,
and hence it cannot be the case that {1} ‖ {2}.

Proof of Claim 4. Let � be a dual indirect utility ranking. To see that �
is transitive, suppose that X � Y and Y � Z. Then for all x /∈ X, there
is yx /∈ Y for which x<• yx. And for all y /∈ Y , there is zy /∈ Z for which
y<• zy. By transitivity of <•, for all x /∈ X, zyx /∈ Z and x<• zyx . Hence
X � Z.

To see monotonicity, suppose that Y ⊆ X. Then, whenever x /∈ X, we
know that x /∈ Y ; hence since x<• x, we have X � Y .

The rule satisfies incomparability of marginal gains, as there is no
X, Y ∈ X for which X � (X ∩ Y ) and Y � (X ∩ Y ). To see this, let
X, Y ∈ X and suppose by means of contradiction that X � (X ∩ Y ) and
Y � (X ∩ Y ).

Since X � (X ∩ Y ), it follows that (X ∩ Y ) � X is false. Hence, there
is some a /∈ (X ∩Y ) such that for all z /∈ X, z�• a. In particular, it follows
easily that a ∈ X \ Y , as otherwise we would get a�• a, since a /∈ X.

Symmetrically, since Y � (X∩Y ), it follows that there is some b ∈ Y \X
such that for all z /∈ Y , z�• b.

Observe then that a�• b�• a, a contradiction.
In general, this rule violates incomparability of marginal losses. To

see this, let A = {1, 2} where ≤ is defined so that no two distinct items
are comparable, and let {1}∼• {2}. Observe that {1, 2} � {1} and that
{1, 2} � {2}, but {1} ∼ {2}.

Proof of Theorem 2. Let B and B′ be sets of benchmarks with associated
benchmarking rules �B and �B′ . We first prove that B ⊆ B′ if �B′⊆�B.
To see this, let �B′⊆�B and let x ∈ B. Then K(x) �B ∅. Because
�B′⊆�B it follows that ∅ �B′ K(x). Because �B′ is monotonic it follows
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that K(x) �B′ ∅. Assume, contrariwise, that x /∈ B′; hence, K(x) ∼B′
K(x) \ {x}. Because x ∈ B, it follows that K(x) �B K(x) \ {x}, which
contradicts the assumption that �B′⊆�B.

To prove the converse, let B ⊆ B′ and let X �B′ Y . Then (Y ∩ B′) ⊆
(X ∩ B′). Because B ⊆ B′ it follows that (Y ∩ B) ⊆ (X ∩ B) and hence
X �B Y .

Proof of Corollary 1. Suppose that � is a benchmarking rule, with associ-
ated benchmarks B.

First, suppose that B has the property that for all a, b ∈ B, either a ≤ b
or b ≤ a. We will show that � is complete. Let X, Y ∈ X . If X ∼ Y , we
are done, so suppose that (B ∩X) 6= (B ∩ Y ). Without loss of generality,
let b ∈ (B ∩ X), and suppose that b /∈ (B ∩ Y ). If (B ∩ Y ) = ∅, we have
that X � Y , so assume that (B ∩ Y ) 6= ∅. Let c ∈ (B ∩ Y ). Now either
b ≤ c or c ≤ b. If the former, then since Y is comprehensive, b ∈ (B ∩ Y ),
which is false. Hence c ≤ b. As X is comprehensive, it follows that c ∈ X.
Conclude that (B ∩ Y ) ⊆ (B ∩X), so that X � Y .

Conversely, suppose that � is complete, and let b, c ∈ B. Either K(b) �
K(c), or conversely. Suppose without loss of generality that K(b) � K(c).
Conclude that c ∈ (B∩K(c)) ⊆ (B∩K(b)). By definition of K(b), c ∈ K(b)
implies that c ≤ b.

Proof of Corollary 2. Suppose that � is a benchmarking rule, and let B be
the associated set of benchmarks. For each b ∈ B, let �{b} be the associated
benchmarking rule. Since {b} is (vacuously) a chain, �{b} is complete. Let
R =

⋃
{�{b}: b ∈ B}.

Now let X, Y ∈ X . Suppose that X � Y . Then (B ∩ Y ) ⊆ (B ∩ X).
In particular, for all b ∈ B, we have b ∈ Y implies b ∈ X; conclude that
X �{b} Y .

Conversely, suppose that for all b ∈ B, we have that X �{b} Y . Then,
if b ∈ Y , it follows that b ∈ X. Conclude X � Y .
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